1
|
Wang L, Jiang S, Zhou J, Gholipourmalekabadi M, Cao Y, Lin K, Zhuang Y, Yuan C. From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications. Bioact Mater 2025; 49:85-120. [PMID: 40124596 PMCID: PMC11928986 DOI: 10.1016/j.bioactmat.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr2+) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr2+ also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr2+ on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Shengjie Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jialiang Zhou
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Yuan Cao
- Colorado College, 819 N Tejon Street Box 56, Colorado Springs, 80903, Colorado, USA
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
2
|
Ren Z, Tang S, Wang J, Lv S, Zheng K, Xu Y, Li K. Bioactive Glasses: Advancing Skin Tissue Repair through Multifunctional Mechanisms and Innovations. Biomater Res 2025; 29:0134. [PMID: 39844865 PMCID: PMC11751205 DOI: 10.34133/bmr.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
As a complex and dynamically regulated process, wound healing is collaboratively carried out by multiple types of cells. However, the precise mechanisms by which these cells contribute to immune regulation are not yet fully understood. Although research on bone regeneration has been quite extensive, the application of bioactive glass (BG) in skin tissue repair remains still relatively underexplored. The review focuses on the principles and the latest progress of using BGs for skin tissue repair, highlighting BGs' special performance requirements, including biological activity, biocompatibility, biodegradability, and antibacterial properties, emphasizing their potential for skin tissue repair. In addition, BGs play a substantial role in regulating various inflammatory cells (neutrophils, macrophages, mast cells, etc.) and tissue repair cells [fibroblasts, vascular endothelial cells, mesenchymal stem cells (MSCs), etc.] involved in wound healing. The review also covers recent developments in composite materials incorporating BGs, demonstrating their ability to promote angiogenesis, inhibit wound biofilms, and improve inflammatory responses in chronic wounds. Furthermore, BGs have shown effectiveness in promoting epithelial regeneration and collagen deposition in burn wounds as well as their applications in scar management and post-tumor resection wound care. Finally, we summarize our views on challenges and directions in the emerging field of BGs for skin tissue regeneration research in the future.
Collapse
Affiliation(s)
- Zhiyang Ren
- Department of Burn and Plastic Surgery, The First Affiliated Hospital ofSoochow University, Soochow University, Suzhou 215006, China
| | - Shuhan Tang
- Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Jia Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College,
Soochow University, Suzhou 215000, Jiangsu, China
| | - Shuqing Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College,
Soochow University, Suzhou 215000, Jiangsu, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine,
Nanjing Medical University, Nanjing 210029, China
| | - Yong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College,
Soochow University, Suzhou 215000, Jiangsu, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital ofSoochow University, Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Chen YY, Chiou YJ, Chang PJ, Chang WM, Yeh YC, Chen CY, Chang YK, Lin CK. In Vitro Evaluation of Electrospun PCL Bioscaffold with Zinc-Doped Bioactive Glass Powder Addition. Polymers (Basel) 2024; 16:2811. [PMID: 39408521 PMCID: PMC11478473 DOI: 10.3390/polym16192811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Preparing electrospun fibers by applying a potential difference between a polymeric solution and a contacting substrate is increasingly attracting attention in tissue engineering applications. Among the numerous polymers, polycaprolactone (PCL) bioscaffold has been widely investigated due to its biocompatibility and biodegradability. Bioactive powder can be added to further improve its performance. In the present study, bioactive glass powder modified by adding 0-6 wt.% antibacterial zinc element (coded as ZBG) was prepared through the sol-gel process. Furthermore, PCL bioscaffolds with various ZBG additions were prepared using the electrospinning technique. The zinc-doped bioactive glass powder and electrospun PCL/ZBG bioscaffolds were evaluated using scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy to determine their structural properties. Additionally, in vitro bioactivity, biocompatibility and antibacterial performance were investigated. Experimental results showed that sol-gelled ZBG powder possessed superior bioactivity and 0.8 g ZBG was the optimal addition to prepare PCL/ZBG bioscaffolds with. All the electrospun PCL/ZBG bioscaffolds were biocompatible and their antibacterial performance against two S. aureus strains (SA133 and Newman) improved with increasing zinc concentration. Electrospun PCL/ZBG bioscaffolds exhibited excellent bioactivity and have great potential for biomedical application.
Collapse
Affiliation(s)
- Ya-Yi Chen
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Stomatology, Tung’s Taichung Metro Harbor Hospital, Taichung 435, Taiwan
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.C.); (W.-M.C.); (C.-Y.C.)
| | - Yuh-Jing Chiou
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.C.); (W.-M.C.); (C.-Y.C.)
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104, Taiwan
| | - Pei-Jung Chang
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.C.); (W.-M.C.); (C.-Y.C.)
- Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Wei-Min Chang
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.C.); (W.-M.C.); (C.-Y.C.)
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Cheng Yeh
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan;
| | - Chin-Yi Chen
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.C.); (W.-M.C.); (C.-Y.C.)
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan;
| | - Yu-Kang Chang
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.C.); (W.-M.C.); (C.-Y.C.)
- Department of Medical Research, Tung’s Taichung Metro Harbor Hospital, Taichung 435, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Chung-Kwei Lin
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.C.); (W.-M.C.); (C.-Y.C.)
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Additive Manufacturing Center for Mass Customization Production, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
4
|
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review. Biomater Sci 2024; 12:4546-4589. [PMID: 39105508 DOI: 10.1039/d3bm01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Bioactive glasses are inorganic biocompatible materials that can find applications in many biomedical fields. The main application is bone and dental tissue engineering. However, some applications in contact with soft tissues are emerging. It is well known that both bulk (such as composition) and surface properties (such as morphology and wettability) of an implanted material influence the response of cells in contact with the implant. This review aims to elucidate and compare the main strategies that are employed to modulate cell behavior in contact with bioactive glasses. The first part of this review is focused on the doping of bioactive glasses with ions and drugs, which can be incorporated into the bioceramic to impart several therapeutic properties, such as osteogenic, proangiogenic, or/and antibacterial ones. The second part of this review is devoted to the chemical functionalization of bioactive glasses using drugs, extra-cellular matrix proteins, vitamins, and polyphenols. In the third and final part, the physical modifications of the surfaces of bioactive glasses are reviewed. Both top-down (removing materials from the surface, for example using laser treatment and etching strategies) and bottom-up (depositing materials on the surface, for example through the deposition of coatings) strategies are discussed.
Collapse
Affiliation(s)
- Elisa Piatti
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
5
|
Sharifianjazi F, Sharifianjazi M, Irandoost M, Tavamaishvili K, Mohabatkhah M, Montazerian M. Advances in Zinc-Containing Bioactive Glasses: A Comprehensive Review. J Funct Biomater 2024; 15:258. [PMID: 39330233 PMCID: PMC11433484 DOI: 10.3390/jfb15090258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Bioactive glasses (BGs) have attracted significant attention in the biomaterials field due to their ability to promote soft and hard tissue regeneration and their potential for various clinical applications. BGs offer enriched features through the integration of different therapeutic inorganic ions within their composition. These ions can trigger specific responses in the body conducive to a battery of applications. For example, zinc, a vital trace element, plays a role in numerous physiological processes within the human body. By incorporating zinc, BGs can inhibit bacterial growth, exert anti-inflammatory effects, and modify bioactivity, promoting better integration with surrounding tissues when used in scaffolds for tissue regeneration. This article reviews recent developments in zinc-containing BGs (ZBGs), focusing on their synthesis, physicochemical, and biological properties. ZBGs represent a significant advancement in applications extending beyond bone regeneration. Overall, their biological roles hold promise for various applications, such as bone tissue engineering, wound healing, and biomedical coatings. Ongoing research continues to explore the potential benefits of ZBGs and to optimize their properties for diverse clinical applications.
Collapse
Affiliation(s)
- Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia
| | | | - Maryam Irandoost
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15916-34311, Iran
| | - Ketevan Tavamaishvili
- School of Medicine, Georgian American University, 10 Merab Aleksidze Street, Tbilisi 0160, Georgia
| | - Mehdi Mohabatkhah
- Department of Engineering, Maku Branch, Islamic Azad University, Azerbaijan 58619-93548, Iran
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Zhou D, Ge M, Wang Q, Sun J, Yao H, Deng Y, Xiao L, Wang J, Wei J. Gold Nanoparticles Confined in Mesoporous Bioactive Glass for Periodontitis Therapy. ACS Biomater Sci Eng 2024; 10:3883-3895. [PMID: 38700993 DOI: 10.1021/acsbiomaterials.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Periodontitis is a chronic disease caused by bacterial infection and is characterized with alveolar bone resorption. Bone regeneration in periodontitis remains a critical challenge because bacterial infection induced an unfavorable microenvironment for osteogenesis. Therefore, it is necessary to design proper therapeutic platforms to control bacterial infection and promote bone regeneration. Herein, mesoporous bioactive glass (MBG) with different pore sizes (3.0, 4.3, and 12.3 nm) was used as an in situ reactor to confine the growth of gold nanoparticles (Au NPs), forming MBG@Au hybrids which combine the osteoconductivity of MBG and antibacterial properties of Au NPs. Upon near-infrared (NIR) irradiation, the MBG@Au NPs showed efficient antibacterial properties both in vitro and in vivo. Besides, the osteogenesis properties of MBG@Au also improved under NIR irradiation. Furthermore, the in vivo results demonstrated that MBG@Au can effectively promote alveolar bone regeneration and realize the healing of serious periodontitis.
Collapse
Affiliation(s)
- Dong Zhou
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Min Ge
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - QiHui Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Jingru Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China
| | - Haiyan Yao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yunyun Deng
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia
| | - Jiaolong Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
7
|
Wang J, Zhang L, Wang K. Bioactive ceramic-based materials: beneficial properties and potential applications in dental repair and regeneration. Regen Med 2024; 19:257-278. [PMID: 39118532 PMCID: PMC11321270 DOI: 10.1080/17460751.2024.2343555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 08/10/2024] Open
Abstract
Bioactive ceramics, primarily consisting of bioactive glasses, glass-ceramics, calcium orthophosphate ceramics, calcium silicate ceramics and calcium carbonate ceramics, have received great attention in the past decades given their biocompatible nature and excellent bioactivity in stimulating cell proliferation, differentiation and tissue regeneration. Recent studies have tried to combine bioactive ceramics with bioactive ions, polymers, bioactive proteins and other chemicals to improve their mechanical and biological properties, thus rendering them more valid in tissue engineering scaffolds. This review presents the beneficial properties and potential applications of bioactive ceramic-based materials in dentistry, particularly in the repair and regeneration of dental hard tissue, pulp-dentin complex, periodontal tissue and bone tissue. Moreover, greater insights into the mechanisms of bioactive ceramics and the development of ceramic-based materials are provided.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
8
|
Gavinho SR, Hammami I, Jakka SK, Teixeira SS, Silva JC, Borges JP, Graça MPF. Influence of the Addition of Zinc, Strontium, or Magnesium Oxides to the Bioglass 45S5 Network on Electrical Behavior. MATERIALS (BASEL, SWITZERLAND) 2024; 17:499. [PMID: 38276437 PMCID: PMC10820946 DOI: 10.3390/ma17020499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
45S5 Bioglass has been widely used in regenerative medicine due to its ability to dissolve when inserted into the body. Its typically amorphous structure allows for an ideal dissolution rate for the formation of the hydroxyapatite layer, which is important for the development of new bone. This bioactive capacity can also be controlled by adding other oxides (e.g., SrO, ZnO, and MgO) to the 45S5 Bioglass network or by storing electrical charge. Ions such as zinc, magnesium, and strontium allow for specific biological responses to be added, such as antibacterial action and the ability to increase the rate of osteoblast proliferation. The charge storage capacity allows for a higher rate of bioactivity to be achieved, allowing for faster attachment to the host bone, decreasing the patient's recovery time. Therefore, it is necessary to understand the variation in the structure of the bioglass with regard to the amount of non-bridging oxygens (NBOs), which is important for the bioactivity rate not to be compromised, and also its influence on the electrical behavior relevant to its potential as electrical charge storage. Thus, several bioactive glass compositions were synthesized based on the 45S5 Bioglass formulation with the addition of various concentrations (0.25, 0.5, 1, and 2, mol%) of zinc, strontium, or magnesium oxides. The influence of the insertion of these oxides on the network was evaluated by studying the amount of NBOs using Raman spectroscopy and their implication on the electrical behavior. Electrical characterization was performed in ac (alternating current) and dc (direct current) regimes.
Collapse
Affiliation(s)
- Sílvia Rodrigues Gavinho
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (I.H.); (S.K.J.); (S.S.T.)
| | - Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (I.H.); (S.K.J.); (S.S.T.)
| | - Suresh Kumar Jakka
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (I.H.); (S.K.J.); (S.S.T.)
| | - Sílvia Soreto Teixeira
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (I.H.); (S.K.J.); (S.S.T.)
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
9
|
Rehder F, Arango-Ospina M, Decker S, Saur M, Kunisch E, Moghaddam A, Renkawitz T, Boccaccini AR, Westhauser F. The Addition of Zinc to the ICIE16-Bioactive Glass Composition Enhances Osteogenic Differentiation and Matrix Formation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Biomimetics (Basel) 2024; 9:53. [PMID: 38248627 PMCID: PMC10813151 DOI: 10.3390/biomimetics9010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
An ICIE16-bioactive glass (BG) composition (in mol%: 49.5 SiO2, 6.6 Na2O, 36.3 CaO, 1.1 P2O5, and 6.6 K2O) has demonstrated excellent in vitro cytocompatibility when cultured with human bone marrow-derived mesenchymal stromal cells (BMSCs). However, its impact on the development of an osseous extracellular matrix (ECM) is limited. Since zinc (Zn) is known to enhance ECM formation and maturation, two ICIE16-BG-based Zn-supplemented BG compositions, namely 1.5 Zn-BG and 3Zn-BG (in mol%: 49.5 SiO2, 6.6 Na2O, 34.8/33.3 CaO, 1.1 P2O5, 6.6 K2O, and 1.5/3.0 ZnO) were developed, and their influence on BMSC viability, osteogenic differentiation, and ECM formation was assessed. Compared to ICIE16-BG, the Zn-doped BGs showed improved cytocompatibility and significantly enhanced osteogenic differentiation. The expression level of the osteopontin gene was significantly higher in the presence of Zn-doped BGs. A larger increase in collagen production was observed when the BMSCs were exposed to the Zn-doped BGs compared to that of the ICIE16-BG. The calcification of the ECM was increased by all the BG compositions; however, calcification was significantly enhanced by the Zn-doped BGs in the early stages of cultivation. Zn constitutes an attractive addition to ICIE16-BG, since it improves its ability to build and calcify an ECM. Future studies should assess whether these positive properties remain in an in vivo environment.
Collapse
Affiliation(s)
- Felix Rehder
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Simon Decker
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Arash Moghaddam
- PrivatÄrztliches Zentrum Aschaffenburg, Frohsinnstraße 12, 63739 Aschaffenburg, Germany
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| |
Collapse
|
10
|
Tsitlakidis S, Hohenbild F, Saur M, Moghaddam A, Kunisch E, Renkawitz T, Gonzalo de Juan I, Westhauser F. Reduced Sodium Portions Favor Osteogenic Properties and Cytocompatibility of 45S5-Based Bioactive Glass Particles. Biomimetics (Basel) 2023; 8:472. [PMID: 37887603 PMCID: PMC10604502 DOI: 10.3390/biomimetics8060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Besides its favorable biological properties, the release of sodium (Na) from the well-known 45S5-bioactive glass (BG) composition (in mol%: 46.1, SiO2, 24.5 CaO, 24.5 Na2O, 6.0 P2O5) can hamper its cytocompatibility. In this study, particles of Na-reduced variants of 45S5-BG were produced in exchange for CaO and P2O5 via the sol-gel-route resulting in Na contents of 75%, 50%, 25% or 0% of the original composition. The release of ions from the BGs as well as their impact on the cell environment (pH values), viability and osteogenic differentiation (activity of alkaline phosphatase (ALP)), the expression of osteopontin and osteocalcin in human bone-marrow-derived mesenchymal stromal cells in correlation to the Na-content and ion release of the BGs was assessed. The release of Na-ions increased with increasing Na-content in the BGs. With decreasing Na content, the viability of cells incubated with the BGs increased. The Na-reduced BGs showed elevated ALP activity and a pro-osteogenic stimulation with accelerated osteopontin induction and a pronounced upregulation of osteocalcin. In conclusion, the reduction in Na-content enhances the cytocompatibility and improves the osteogenic properties of 45S5-BG, making the Na-reduced variants of 45S5-BG promising candidates for further experimental consideration.
Collapse
Affiliation(s)
- Stefanos Tsitlakidis
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Frederike Hohenbild
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Arash Moghaddam
- PrivatÄrztliches Zentrum Aschaffenburg, Frohsinnstraße 12, 63739 Aschaffenburg, Germany;
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| | - Isabel Gonzalo de Juan
- Institut für Materialwissenschaft, Technische Universität Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany; (S.T.); (M.S.); (E.K.)
| |
Collapse
|
11
|
Yang TY, Chern GI, Wang WH, Shih CJ. Synthesis, Characterization, and Bioactivity of Mesoporous Bioactive Glass Codoped with Zinc and Silver. Int J Mol Sci 2023; 24:13679. [PMID: 37761992 PMCID: PMC10531463 DOI: 10.3390/ijms241813679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the overconsumption of antimicrobials, antibiotic-resistant bacteria have become a critical health issue worldwide, especially methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). Recently, many efforts have been made to load metals into bioactive glasses to enhance the multifunctionality of materials, such as antibacterial and osteoinductive functions. Zinc has been documented to stimulate the gene expression of various regulatory factors in bone cells. Meanwhile, previous studies have reported that silver and zinc could be a promising antibacterial combination with synergistic antimicrobial effects. Here, we sought to develop a biomaterial coreleasing zinc and silver, designated 80S-ZnAg, and to evaluate its antibacterial activity and biocompatibility. The textural analyses demonstrated different coreleasing patterns of zinc and silver for the materials. The chemical characterization revealed that the zinc in 80S-ZnAg could be the network modifier when its molar ratio was high, releasing more zinc; zinc could also be the network former when its molar ratio was low, showing an extremely low rate of release. However, the ICP results for 80S-Zn3Ag2 demonstrated up to 7.5 ppm of zinc and 67.6 ppm of silver. Among all the 80S-ZnAg materials, 80S-Zn3Ag2 demonstrated more marked antibacterial activity against MRSA and VRE than the others, with inhibition zones of 11.5 and 13.4 mm, respectively. The cytotoxicity assay exhibited nearly 90% cell viability at 20 mg/mL of 80-Zn3Ag2. Further clinical study is needed to develop an innovative biomaterial to address the issue of antibiotic resistance.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung 84001, Taiwan;
- Research Organization for Nano and Life Innovation, Future Innovation Institute, Waseda University, Tokyo 162-0041, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- School of Education, Waseda University, Tokyo 169-8050, Japan
| | - Guann-In Chern
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Chemical Engineering, National United University, Miaoli 36063, Taiwan
- Department of Golden-Ager Industry Management, Chaoyang University of Technology, Taichung 41349, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Elahpour N, Niesner I, Bossard C, Abdellaoui N, Montouillout V, Fayon F, Taviot-Guého C, Frankenbach T, Crispin A, Khosravani P, Holzapfel BM, Jallot E, Mayer-Wagner S, Lao J. Zinc-Doped Bioactive Glass/Polycaprolactone Hybrid Scaffolds Manufactured by Direct and Indirect 3D Printing Methods for Bone Regeneration. Cells 2023; 12:1759. [PMID: 37443794 PMCID: PMC10341101 DOI: 10.3390/cells12131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A novel organic-inorganic hybrid, based on SiO2-CaO-ZnO bioactive glass (BG) and polycaprolactone (PCL), associating the highly bioactive and versatile bioactive glass with clinically established PCL was examined. The BG-PCL hybrid is obtained by acid-catalyzed silica sol-gel process inside PCL solution either by direct or indirect printing. Apatite-formation tests in simulated body fluid (SBF) confirm the ion release along with the hybrid's bone-like apatite forming. Kinetics differ significantly between directly and indirectly printed scaffolds, the former requiring longer periods to degrade, while the latter demonstrates faster calcium phosphate (CaP) formation. Remarkably, Zn diffusion and accumulation are observed at the surface within the newly formed active CaP layer. Zn release is found to be dependent on printing method and immersion medium. Investigation of BG at the atomic scale reveals the ambivalent role of Zn, capable of acting both as a network modifier and as a network former linking the BG silicate network. In addition, hMSCs viability assay proves no cytotoxicity of the Zn hybrid. LIVE/DEAD staining demonstrated excellent cell viability and proliferation for over seven weeks. Overall, this hybrid material either non-doped or doped with a metal trace element is a promising candidate to be translated to clinical applications for bone regeneration.
Collapse
Affiliation(s)
- Nafise Elahpour
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| | - Isabella Niesner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Cédric Bossard
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| | - Nora Abdellaoui
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| | - Valérie Montouillout
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), CNRS-UPR3079, Université Orléans, F-45071 Orléans, France
| | - Franck Fayon
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), CNRS-UPR3079, Université Orléans, F-45071 Orléans, France
| | - Christine Taviot-Guého
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS/UMR 6296, F-63000 Clermont-Ferrand, France
| | - Tina Frankenbach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Alexander Crispin
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Pardis Khosravani
- Flow Cytometry Core Facility, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Edouard Jallot
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Jonathan Lao
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| |
Collapse
|
13
|
Mecca FG, Bellucci D, Cannillo V. Effect of Thermal Treatments and Ion Substitution on Sintering and Crystallization of Bioactive Glasses: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4651. [PMID: 37444965 DOI: 10.3390/ma16134651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Bioactive glasses (BGs) are promising materials for bone regeneration due to their ability to bond with living bone tissue. However, thermal stability and mechanical properties of BGs need improvement for better clinical performance. In this paper, we present an overview of the influence of different ions on the sintering and crystallization of BGs. Specifically, this review focuses on the impact of thermal treatments on the crystallization of 45S5 and other significant BG compositions. Potential applications of these thermally treated BGs, such as scaffolds, BG-based composites, and thermally sprayed coatings, are explored. Moreover, the substitution of ions has been investigated as a method to enhance the thermal properties of BGs. Notably, zinc, potassium, and strontium have been studied extensively and have demonstrated promising effects on both the thermal and the mechanical properties of BGs. However, it is important to note that research on ion inclusion in BGs is still in its early stages, and further investigation is necessary to fully comprehend the effects of different ions on sintering and crystallization. Therefore, future studies should focus on optimizing the ion substitution method to improve the thermal, mechanical, and even biological properties of BGs, thereby enhancing their potential for various biomedical applications.
Collapse
Affiliation(s)
- Francesco Gerardo Mecca
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| |
Collapse
|
14
|
Ali A, Paladhi A, Hira SK, Singh BN, Pyare R. Bioactive ZnO-assisted 1393 glass scaffold promotes osteogenic differentiation: Some studies. J Biomed Mater Res B Appl Biomater 2023; 111:1059-1073. [PMID: 36583285 DOI: 10.1002/jbm.b.35214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
We developed ZnO-assisted 1393 bioactive glass-based scaffold with suitable mechanical properties through foam replica technique and observed to be suitable for bone tissue engineering application. However, the developed scaffolds' ability to facilitate cellular infiltration and integration was further assessed through in vivo studies in suitable animal model. Herein, the pure 1393 bioactive glass (BG) and ZnO-assisted 1393 bioactive glass- (ZnBGs; 1, 2, 4 mol% ZnO substitution for SiO2 in pure BG is named as Z1BG, Z2BG, Z3BG, respectively) based scaffolds were prepared through sol-gel route, followed by foam replica techniques and characterized by a series of in vitro and some in vivo tests. Different cell lines like normal mouse embryonic cells (NIH/3T3), mouse bone marrow stromal cells (mBMSc), peripheral blood mononuclear cells, that is, lymphocytes and monocytes (PBMC) and U2OS (carcinogenic human osteosarcoma cells) were used in determination and comparative analysis of the biological compatibility of the BG and ZnBGs. Also, the alkaline phosphatase (ALP) activity, and osteogenic gene expression by primer-specific osteopontin (OPN), osteocalcin (OCN), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were performed to study osteogenic differentiability of the stromal cells in different BGs. Moreover, radiological and histopathological tests were performed in bone defect model of Wister rats to evaluate the in vivo bone regeneration and healing. Interestingly, these studies demonstrate augmented biological compatibility, and superior osteogenic differentiation in ZnBGs, in particular Z3BG than the pure BG in most cases.
Collapse
Affiliation(s)
- Akher Ali
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Ram Pyare
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
15
|
Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Costa LC, Graça MPF. Fabrication, Structural and Biological Characterization of Zinc-Containing Bioactive Glasses and Their Use in Membranes for Guided Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:956. [PMID: 36769963 PMCID: PMC9919611 DOI: 10.3390/ma16030956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Polymeric membranes are widely used in guided bone regeneration (GBR), particularly in dentistry. In addition, bioactive glasses can be added to the polymers in order to develop a matrix that is osteoconductive and osteoinductive, increasing cell adhesion and proliferation. The bioactive glasses allow the insertion into its network of therapeutic ions in order to add specific biological properties. The addition of zinc into bioactive glasses can promote antibacterial activity and induce the differentiation and proliferation of the bone cells. In this study, bioactive glasses containing zinc (0.25, 0.5, 1 and 2 mol%) were developed and structurally and biologically characterized. The biological results show that the Zn-containing bioactive glasses do not present significant antibacterial activity, but the addition of zinc at the highest concentration does not compromise the bioactivity and promotes the viability of Saos-2 cells. The cell culture assays in the membranes (PCL, PCL:BG and PCL:BGZn2) showed that zinc addition promotes cell viability and an increase in alkaline phosphatase (ALP) production.
Collapse
Affiliation(s)
- Sílvia R. Gavinho
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge C. Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João P. Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Luis C. Costa
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel Pedro F. Graça
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Silver, Copper, Magnesium and Zinc Contained Electroactive Mesoporous Bioactive S53P4 Glass–Ceramics Nanoparticle for Bone Regeneration: Bioactivity, Biocompatibility and Antibacterial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
18
|
Agro waste as a source of bioactive glass for targeted drug delivery and bone implantation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5440. [PMID: 34576662 PMCID: PMC8470635 DOI: 10.3390/ma14185440] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
The use of bioactive glasses in dentistry, reconstructive surgery, and in the treatment of infections can be considered broadly beneficial based on the emerging literature about the potential bioactivity and biocompatibility of these materials, particularly with reference to Bioglass® 45S5, BonAlive® and 19-93B3 bioactive glasses. Several investigations have been performed (i) to obtain bioactive glasses in different forms, such as bulk materials, powders, composites, and porous scaffolds and (ii) to investigate their possible applications in the biomedical field. Although in vivo studies in animals provide us with an initial insight into the biological performance of these systems and represent an unavoidable phase to be performed before clinical trials, only clinical studies can demonstrate the behavior of these materials in the complex physiological human environment. This paper aims to carefully review the main published investigations dealing with clinical trials in order to better understand the performance of bioactive glasses, evaluate challenges, and provide an essential source of information for the tailoring of their design in future applications. Finally, the paper highlights the need for further research and for specific studies intended to assess the effect of some specific dissolution products from bioactive glasses, focusing on their osteogenic and angiogenic potential.
Collapse
Affiliation(s)
- Maria Cannio
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| | - Judith A. Roether
- Department of Materials Science and Engineering, Institute for Polymer Materials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| |
Collapse
|
20
|
Idumah CI, Ezika AC. Recent advancements in hybridized polymer nano-biocomposites for tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Anthony Chidi Ezika
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and The Built Environment, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
21
|
Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: A multifunctional delivery system. J Control Release 2021; 335:481-497. [PMID: 34087250 DOI: 10.1016/j.jconrel.2021.05.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
Bioactive glasses (BAGs) were invented five decades ago and have been widely used clinically in orthopedic and stomatology. However, in the past two decades, BAGs have been explored immensely by several researchers worldwide as a multifunctional delivery system for a multitude of therapeutics ranging from metal ions to small molecules (e.g., drugs) and macromolecules (e.g., DNA). The impetus for devising a BAG-based delivery system in the 21st century is based upon the facilitative properties it offers for entrapment of a wide range of therapeutic molecules and the tailorable controlled release kinetics to the target tissue site along with the biological activity of the ionic dissolution products in several pathological conditions such as osteoporosis, cancer, infection, and inflammation. This review comprises two parts: the first part discusses the need for a new delivery system and how the journey from melt quench progressed towards template-based sol-gel mesoporous. In the second part, we have comprehended the scientific advancements made so far, emphasizing BAGs as a delivery system ranging from therapeutic ions to phytopharmaceuticals. We have also highlighted a few loopholes that have prevented bench-to-bedside clinical translation of a plethora of elucidative researches done so far.
Collapse
Affiliation(s)
- Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
22
|
Wanitwisutchai T, Monmaturapoj N, Srisatjaluk R, Subannajui K, Dechkunakorn S, Anuwongnukroh N, Pongprueksa P. Buffering capacity and antibacterial properties among bioactive glass-containing orthodontic adhesives. Dent Mater J 2021; 40:1169-1176. [PMID: 34078777 DOI: 10.4012/dmj.2020-375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was to evaluate the acid-buffering capacity and antibacterial properties of orthodontic adhesives containing bioactive glasses (BAGs) (45S5, 45S5F, S53P4), Hydroxyapatite, beta-tricalcium phosphate, and Canasite. Fillers comprising 15 wt% bioactive glasses, HAp, β-TCP, and Canasite incorporated with 55 wt% silanated glass were added to a mixture of UDMA/TEGDMA. Acid-buffering capacity was tested by exposing disc-shaped samples of each adhesive to medium of bacteria-produced acids, and pH changes were recorded at 24 and 48 h. Antibacterial properties were assessed by indirect testing by exposing polymerized adhesive samples to a medium and direct testing by immersing the specimens in solutions containing S. mutans and S. sanguinis. A significant buffering capacity was shown by the 45S5, 45S5F and S53P4 BAG adhesives. The antibacterial properties were not significant in all experimental adhesives. Therefore, the experimental orthodontic adhesives containing BAGs demonstrated a significant buffering capacity but did not show significant antibacterial properties against S. mutans and S. sanguinis.
Collapse
Affiliation(s)
| | - Naruporn Monmaturapoj
- Assistive Technology and Medical Devices Research Center, National Science and Technology Development Agency
| | | | - Kittitat Subannajui
- Material Science and Engineering Program, Multi-Disciplinary Unit, Faculty of Science, Mahidol University
| | | | | | - Pong Pongprueksa
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University
| |
Collapse
|
23
|
Bai X, Liu W, Xu L, Ye Q, Zhou H, Berg C, Yuan H, Li J, Xia W. Sequential macrophage transition facilitates endogenous bone regeneration induced by Zn-doped porous microcrystalline bioactive glass. J Mater Chem B 2021; 9:2885-2898. [PMID: 33721004 DOI: 10.1039/d0tb02884c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Macrophages play an important role in the immune microenvironment during bone healing, and sequential macrophage phenotypic transition could achieve superior osteogenic outcomes. Microcrystalline bioactive glasses (MCBGs) with osteoimmunomodulatory effects show potential in bone tissue regeneration. Zinc (Zn) has been approved to coordinate innate and adaptive immunity. Therefore, in this study, different amounts of ZnO were incorporated into microcrystalline bioactive glass to improve its immunomodulatory ability. The effect of Zn-MCBG ionic extracts on macrophage transition was studied, and the 5Zn-MCBG extracts could orchestrate sequential M1-to-M2 macrophage transition and promote the expression of proinflammatory and anti-inflammatory genes and cytokine expression to induce human bone marrow stromal cells (hBMSCs) osteogenic differentiation in vitro. Macroporous Zn-MCBG scaffolds containing mesopores were fabricated and showed good cell adhesion and feasible apatite formation when immersed in SBF in vitro. Furthermore, a rat calvarial defect model was used to confirm that the Zn-MCBG scaffold could modulate macrophage phenotypic transition and create a desirable osteogenic microenvironment to promote osteogenesis in vivo.
Collapse
Affiliation(s)
- Xuan Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sergi R, Cannillo V, Boccaccini AR, Liverani L. A New Generation of Electrospun Fibers Containing Bioactive Glass Particles for Wound Healing. MATERIALS 2020; 13:ma13245651. [PMID: 33322335 PMCID: PMC7763513 DOI: 10.3390/ma13245651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/10/2023]
Abstract
Chitosan fibers blended with polyethylene oxide (CHIT_PEO) and crosslinked with genipin were fabricated by electrospinning technique. Subsequently, CHIT_PEO bioactive glass composite electrospun mats were fabricated with the aim to achieve flexible structures with adequate mechanical properties and improved biological performance respect to CHIT_PEO fibers, for potential applications in wound healing. Three different compositions of bioactive glasses (BG) were selected and investigated: 45S5 BG, a Sr and Mg containing bioactive glass (BGMS10) and a Zn-containing bioactive glass (BGMS_2Zn). Particulate BGs (particles size < 20 μm) were separately added to the starting CHIT_PEO solution before electrospinning. The two recently developed bioactive glasses (BGMS10 and BGMS_2Zn) showed very promising biological properties in terms of bioactivity and cellular viability; thus, such compositions were added for the first time to CHIT_PEO solution to fabricate composite electrospun mats. The incorporation of bioactive glass particles and their distribution into CHIT_PEO fibers were assessed by SEM and FTIR analyses. Furthermore, CHIT_PEO composite electrospun mats showed improved mechanical properties in terms of Young’s Modulus compared to neat CHIT_PEO fibers; on the contrary, the values of tensile strain at break (%) were comparable. Biological performance in terms of cellular viability was investigated by means of WST-8 assay and CHIT_PEO composite electrospun mats showed cytocompatibility and the desired cellular viability.
Collapse
Affiliation(s)
- Rachele Sergi
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (V.C.)
| | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (V.C.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
- Correspondence: ; Tel.: +49-(0)9131-85-28603
| |
Collapse
|
25
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|
26
|
Production of Soda Lime Glass Having Antibacterial Property for Industrial Applications. MATERIALS 2020; 13:ma13214827. [PMID: 33126734 PMCID: PMC7663106 DOI: 10.3390/ma13214827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
This study was aimed to produce and characterize the first commercial glass materials with enhanced antibacterial property using conventional melting method. For this purpose, typical container glass composition that contains some specific metal ions, such as silver, strontium, and copper, was used to obtain antibacterial glass samples using classical melting method. After the melting process, antibacterial tests and migration tests were applied to the glasses, and it was found that the glass doped with 2% Ag2O was the best composition. X-rays diffractometer (XRD), thermal expansion coefficient, density, refractive index, hardness, and elastic module results showed that the glass doped with 2% Ag2O was a suitable material as a container glass. High Temperature Melting Observation System studies were performed on the produced antibacterial glass composition, and it was found that the antibacterial glass can be produced in soda lime glass furnaces without changing any furnace design and production parameters. As a result of the characterization studies, it was concluded that the produced container glass doped with silver can be a good candidate for food and pharmaceutical products where bacterial growth is absolutely undesirable.
Collapse
|
27
|
Ananth A, Han I, Akter M, Boo JH, Choi EH. Handy Soft Jet Plasma as an Effective Technique for Tailored Preparation of ZnS Nanomaterials and Shape Dependent Antibacterial Performance of ZnS. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Development of New Mg- or Sr-Containing Bioactive Interfaces to Stimulate Osseointegration of Metallic Implants. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The purpose of this study resides in the design and deposition of several types of bioactive interfaces with complex composition, targeting a superior osseointegration of bone implants. The experimental approach is framed by two oxide systems, SiO2‒CaO‒P2O5‒ZnO‒MgO and SiO2‒CaO‒P2O5‒ZnO‒SrO, while the percentage values were established as optimised solutions for ensuring wear resistance, bioactivity and beneficial effects on cell metabolism and reproduction. Moreover, two methods dedicated to fils growth (pulsed laser deposition and spin coating) were explored as potential variants for coating the bioinert materials and providing a transitional anchoring layer between the artificial substitute and host tissue. The obtained layers were evaluated as vitroceramic in nature, nanostructured in morphology and bioactive in relation to the physiological environment. The response of human fetal osteoblasts placed in contact with the new engineered surfaces was characterized by a significant proliferation from 1 to 4 days, which validates their suitability for hard tissue applications.
Collapse
|
29
|
Di Tinco R, Sergi R, Bertani G, Pisciotta A, Bellucci D, Carnevale G, Cannillo V, Bertoni L. Effects of a Novel Bioactive Glass Composition on Biological Properties of Human Dental Pulp Stem Cells. MATERIALS 2020; 13:ma13184049. [PMID: 32932607 PMCID: PMC7560350 DOI: 10.3390/ma13184049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
Functional reconstruction of bone defects represents a clinical challenge in the regenerative medicine field, which targets tissue repair following traumatic injuries and disease-related bone deficiencies. In this regard, the optimal biomaterial should be safe, biocompatible and tailored in order to promote the activation of host progenitor cells towards bone repair. Bioactive glasses might be suitable biomaterials due to their composition being able to induce the host healing response and, eventually, anti-bacterial properties. In this study we investigated whether and how an innovative bioactive glass composition, called BGMS10, may affect cell adhesion, morphology, proliferation, immunomodulation and osteogenic differentiation of human dental pulp stem cells (hDPSCs). When cultured on BGMS10, hDPSCs maintained their proliferation rate and typical fibroblast-like morphology, showing the expression of stemness markers STRO-1 and c-Kit. Moreover, the expression of FasL, a key molecule in mediating immunomodulation effects of hDPSCs, was maintained. BGMS10 also proved to trigger osteogenic commitment of hDPSCs, as confirmed by the activation of bone-related transcription factors RUNX2 and Osx and the ongoing deposition of extracellular matrix supported by the expression of OPN and OCN. Our findings suggest that BGMS10 not only maintains the typical biological and immunomodulatory properties of hDPSCs but also favors the osteogenic commitment.
Collapse
Affiliation(s)
- Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
| | - Rachele Sergi
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.); (V.C.)
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
| | - Devis Bellucci
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.); (V.C.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
| | - Valeria Cannillo
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.); (V.C.)
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (G.C.)
- Correspondence:
| |
Collapse
|
30
|
Incorporation of Bioactive Glasses Containing Mg, Sr, and Zn in Electrospun PCL Fibers by Using Benign Solvents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Poly(ε-caprolactone) (PCL) and PCL/bioactive glass composite fiber mats were produced by electrospinning technique. To improve cell adhesion and proliferation (i) 45S5, (ii) a bioactive glass containing strontium and magnesium oxides, and (iii) a bioactive glass containing zinc oxide were separately added to the starting PCL solution before electrospinning. A good incorporation of bioactive glass particles in PCL electrospun mats was confirmed by SEM and FTIR analyses. Bioactivity was evaluated by immersion of PCL mats and PCL/bioactive glass electrospun fiber mats in simulated body fluid (SBF). Bone murine stromal cells (ST-2) were employed in WST-8 assay to assess cell viability, cell morphology, and proliferation. The results showed that the presence of bioactive glass particles in the fibers enhances cell adhesion and proliferation compared to neat PCL mats. Furthermore, PCL/bioactive glass electrospun mats showed higher wound-healing rate (measured as cell migration rate) in vitro compared to neat PCL electrospun mats. Therefore, the characteristics of the PCL matrix combined with biological properties of bioactive glasses make PCL/bioactive glass composite ideal candidate for biomedical application.
Collapse
|
31
|
A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives. COATINGS 2020. [DOI: 10.3390/coatings10080757] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bioactive glasses are promising biomaterials for bone and tissue repair and reconstruction, as they were shown to bond to both hard and soft tissues stimulating cells towards a path of regeneration and self-repair. Unfortunately, due to their relatively poor mechanical properties, such as brittleness, low bending strength and fracture toughness, their applications are limited to non-load-bearing implants. However, bioactive glasses can be successfully applied as coatings on the surface of metallic implants to combine the appropriate mechanical properties of metal alloys to bioactivity and biocompatibility of bioactive glasses. In this review, several available coating techniques to coat metal alloys using bioactive glasses are described, with a special focus on thermal spraying, which nowadays is the most used to deposit coatings on metallic implants.
Collapse
|
32
|
Sergi R, Bellucci D, Salvatori R, Cannillo V. Chitosan-Based Bioactive Glass Gauze: Microstructural Properties, In Vitro Bioactivity, and Biological Tests. MATERIALS 2020; 13:ma13122819. [PMID: 32585873 PMCID: PMC7344553 DOI: 10.3390/ma13122819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/19/2023]
Abstract
Passive commercial gauzes were turned into interactive wound dressings by impregnating them with a chitosan suspension. To further improve healing, and cell adhesion and proliferation, chitosan/bioactive glass wound dressings were produced with the addition of (i) 45S5, (ii) a Sr- and Mg-containing bioactive glass, and (iii) a Zn-containing bioactive glass to the chitosan suspension. SEM and FTIR analyses evidenced positive results in terms of incorporation of bioactive glass particles. Bioactivity was investigated by soaking chitosan-based bioactive glass wound dressings in simulated body fluid (SBF). Cell viability, proliferation, and morphology were investigated using NIH 3T3 (mouse embryonic fibroblast) cells by neutral red (NR) uptake and MTT assays. Furthermore, the wound-healing rate was evaluated by means of the scratch test, using NIH 3T3. The results showed that bioactive glass particles enhance cell adhesion and proliferation, and wound healing compared to pure chitosan. Therefore, chitosan-based bioactive glass wound dressings combine the properties of the organic matrix with the specific biological characteristics of bioactive glasses to achieve chitosan composites suitable for healing devices.
Collapse
Affiliation(s)
- Rachele Sergi
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| | - Roberta Salvatori
- Laboratorio dei Biomateriali, Dipartimento di Scienze Mediche Chirurgiche Materno-Infantili e dell’Adulto, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy;
| | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
- Correspondence: ; Tel.: +39-059-2056240
| |
Collapse
|