1
|
Sun R, Wang M, Zeng T, Chen H, Yoshitomi T, Takeguchi M, Kawazoe N, Yang Y, Chen G. Scaffolds functionalized with matrix metalloproteinase-responsive release of miRNA for synergistic magnetic hyperthermia and sensitizing chemotherapy of drug-tolerant breast cancer. Bioact Mater 2025; 44:205-219. [PMID: 39502841 PMCID: PMC11535879 DOI: 10.1016/j.bioactmat.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Combining hyperthermia and chemotherapy for maximum anticancer efficacy remains a challenge because drug-tolerant cancer cells often evade this synergistic treatment due to drug resistance and asynchronous drug release. In this study, multifunctional scaffolds were designed to efficiently treat drug-tolerant breast cancer by improving the sensitization of breast cancer cells and synchronizing anticancer drug release with magnetic hyperthermia. The scaffolds contained microRNA-encapsulated matrix metalloproteinase-cleavable liposomes, doxorubicin-encapsulated thermoresponsive liposomes and Fe3O4 nanoparticles. The scaffolds could release microRNA specifically to improve the sensitization of breast cancer cells to anticancer drugs. The scaffolds also showed excellent hyperthermia effects under alternating magnetic field irradiation. Moreover, doxorubicin release was synchronized with magnetic hyperthermia. In vitro and in vivo studies demonstrated that the scaffolds effectively reduced drug resistance and eliminated doxorubicin-tolerant MDA-MB-231 cells through the synergistic effect of magnetic hyperthermia and sensitizing chemotherapy. Additionally, the scaffolds could support the proliferation and adipogenic differentiation of stem cells for adipose tissue regeneration after killing cancer cells at a late therapeutic stage. These composite scaffolds offer an innovative strategy for treating breast cancer, with synergistic anticancer effects and regenerative functions.
Collapse
Affiliation(s)
- Rui Sun
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Masaki Takeguchi
- Research Center for Energy and Environmental Materials, National Institute for Materials Science, Ibaraki, 305-0047, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
2
|
Văduva M, Nila A, Udrescu A, Cramariuc O, Baibarac M. Nanocomposites Based on Iron Oxide and Carbonaceous Nanoparticles: From Synthesis to Their Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6127. [PMID: 39769728 PMCID: PMC11676432 DOI: 10.3390/ma17246127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Nanocomposites based on Fe3O4 and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as Fe3O4@GO, Fe3O4@RGO, and Fe3O4@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on Fe3O4. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration. Hence, a solid foundation has been established for the integration of various synthesis techniques for these nanocomposites, with the wet co-precipitation method being the most prevalent. Moreover, the dimensions and morphology of the composite nanoparticles are directly correlated with the value of magnetic saturation, thus influencing the efficiency of the composite in drug delivery and other significant biomedical applications. The current demand for this type of material is related to the loading of a larger quantity of drugs within the hybrid structure of the carrier, with the objective of releasing this amount into the tumor cells. A second demand refers to the biocompatibility of the drug carrier and its capacity to permeate cell membranes, as well as the processes occurring within the drug carriers. The main objective of this paper is to review the synthesis methods used to prepare hybrids based on Fe3O4 and CNPs, such as GO, RGO, and CNTs, and to examinate their role in the formation of hybrid nanoparticles and the correlation between their morphology, the dimensions, and optical/magnetic properties.
Collapse
Affiliation(s)
- Mirela Văduva
- National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania; (A.U.); (M.B.)
| | - Andreea Nila
- National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania; (A.U.); (M.B.)
| | - Adelina Udrescu
- National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania; (A.U.); (M.B.)
| | - Oana Cramariuc
- IT Center for Science and Technology, 25 No. Av. Radu Beller Str., 011702 Bucharest, Romania;
| | - Mihaela Baibarac
- National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania; (A.U.); (M.B.)
| |
Collapse
|
3
|
Kołodziej A, Świętek M, Hlukhaniuk A, Horák D, Wesełucha-Birczyńska A. Raman spectroscopic investigation of polymer based magnetic multicomponent scaffolds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124800. [PMID: 39024784 DOI: 10.1016/j.saa.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Scaffolds acting as an artificial matrix for cell proliferation are one of the bone tissue engineering approaches to the treatment of bone tissue defects. In the presented study, novel multicomponent scaffolds composed of a poly(ε-caprolactone) (PCL), phenolic compounds such as tannic (TA) and gallic acids (GA), and nanocomponents such as silica-coated magnetic iron oxide nanoparticles (MNPs-c) and functionalized multi-walled carbon nanotubes (CNTs) have been produced as candidates for such artificial substitutes. Well-developed interconnected porous structures were observed using scanning electron microscopy (SEM). Raman spectra showed that the highly crystalline nature of PCL was reduced by the addition of nanoadditives. In the case of scaffolds containing MNPs-c and TA, the formation of a Fe-TA complex was concluded because characteristic bands of chelation of the Fe3+ ion by phenolic catechol oxygen appeared. It was found that the necessary conditions for the crystallization of the PCL/MNPs-c/TA are for the catechol groups to be able to penetrate the porous silica shell of MNPs-c, as during experiment with MNPs-c and TA without polymer, no such complexation was observed. Moreover, the number of catechol groups, the spatial structure and molecular size of this phenolic compound are also crucial for complexation process because GA does not form complexes. Therefore, the PCL/CNTs/MNPs-c/TA scaffolds are interesting candidates to consider for their possible medical applications.
Collapse
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Anna Hlukhaniuk
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Sq. 2, 162 06 Prague 6, Czech Republic
| | | |
Collapse
|
4
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
5
|
Hlukhaniuk A, Świętek M, Patsula V, Hodan J, Janoušková O, Bystrianský L, Brož A, Malić M, Zasońska B, Tokarz W, Bačáková L, Horák D. Poly(ε-Caprolactone)-Based Composites Modified With Polymer-Grafted Magnetic Nanoparticles and L-Ascorbic Acid for Bone Tissue Engineering. J Biomed Mater Res B Appl Biomater 2024; 112:e35480. [PMID: 39223717 DOI: 10.1002/jbm.b.35480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
The aim of this study was to develop multifunctional magnetic poly(ε-caprolactone) (PCL) mats with antibacterial properties for bone tissue engineering and osteosarcoma prevention. To provide good dispersion of magnetic iron oxide nanoparticles (IONs), they were first grafted with PCL using a novel three-step approach. Then, a series of PCL-based mats containing a fixed amount of ION@PCL particles and an increasing content of ascorbic acid (AA) was prepared by electrospinning. AA is known for increasing osteoblast activity and suppressing osteosarcoma cells. Composites were characterized in terms of morphology, mechanical properties, hydrolytic stability, antibacterial performance, and biocompatibility. AA affected both the fiber diameter and the mechanical properties of the nanocomposites. All produced mats were nontoxic to rat bone marrow-derived mesenchymal cells; however, a composite with 5 wt.% of AA suppressed the initial proliferation of SAOS-2 osteoblast-like cells. Moreover, AA improved antibacterial properties against Staphylococcus aureus and Escherichia coli compared to PCL. Overall, these magnetic composites, reported for the very first time, can be used as scaffolds for both tissue regeneration and osteosarcoma prevention.
Collapse
Affiliation(s)
- Anna Hlukhaniuk
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Hodan
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Janoušková
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Lukáš Bystrianský
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Antonín Brož
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marina Malić
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Beata Zasońska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Waldemar Tokarz
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Cedillo-Servin G, Dahri O, Meneses J, van Duijn J, Moon H, Sage F, Silva J, Pereira A, Magalhães FD, Malda J, Geijsen N, Pinto AM, Castilho M. 3D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307178. [PMID: 37950402 DOI: 10.1002/smll.202307178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Indexed: 11/12/2023]
Abstract
This work reports the rational design and fabrication of magneto-active microfiber meshes with controlled hexagonal microstructures via melt electrowriting (MEW) of a magnetized polycaprolactone-based composite. In situ iron oxide nanoparticle deposition on oxidized graphene yields homogeneously dispersed magnetic particles with sizes above 0.5 µm and low aspect ratio, preventing cellular internalization and toxicity. With these fillers, homogeneous magnetic composites with high magnetic content (up to 20 weight %) are obtained and processed in a solvent-free manner for the first time. MEW of magnetic composites enabled the creation of skeletal muscle-inspired design of hexagonal scaffolds with tunable fiber diameter, reconfigurable modularity, and zonal distribution of magneto-active and nonactive material, with elastic tensile deformability. External magnetic fields below 300 mT are sufficient to trigger out-of-plane reversible deformation. In vitro culture of C2C12 myoblasts on three-dimensional (3D) Matrigel/collagen/MEW scaffolds showed that microfibers guided the formation of 3D myotube architectures, and the presence of magnetic particles does not significantly affect viability or differentiation rates after 8 days. Centimeter-sized skeletal muscle constructs allowed for reversible, continued, and dynamic magneto-mechanical stimulation. Overall, these innovative microfiber scaffolds provide magnetically deformable platforms suitable for dynamic culture of skeletal muscle, offering potential for in vitro disease modeling.
Collapse
Affiliation(s)
- Gerardo Cedillo-Servin
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
| | - Ouafa Dahri
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - João Meneses
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Joost van Duijn
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Harrison Moon
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Fanny Sage
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - Joana Silva
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - André Pereira
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Fernão D Magalhães
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Jos Malda
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3508 GA, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - Artur M Pinto
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Miguel Castilho
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
7
|
Lan L, Zhang Q, Zhang H, Yang X, Li S, Li G, Luo Y, Nie D, Zhang G, Dai J. Preparation of hydroxyapatite coated porous carbon nanofibres for DEX loading and enhancing differentiation of BMSCs. RSC Adv 2023; 13:30898-30904. [PMID: 37869382 PMCID: PMC10588370 DOI: 10.1039/d3ra02107f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
The proliferation and differentiation of bone mesenchymal stem cells (BMSCs) in vitro are the key properties of bone tissue engineering for biomaterials. In this study, hydroxyapatite (HA) coated porous carbon nanofibres (PCNFs) were prepared to load dexamethasone (DEX) and further improve the differentiation ability of the BMSCs. Various characterisations were applied to reveal the DEX loading efficacy and biocompatibility, especially the differentiation strength. The results showed that HA could be successfully coated on the PCNFs by pretreating the surface using PEG conjugation. With an increase of HA, the particle diameter increased and the DEX loading decreased. In vitro experiments proved higher cell viability, alkaline phosphatase (ALP) activity, calcium nodule secretion ability and the RUNX2 protein expression, indicating that the as-prepared was of great biocompatibility and optimised osteoconductivity, which was attributed to the componential imitation to natural bone and the accelerated BMSCs differentiation. Consequently, the novel DEX loaded and HA coated PCNFs can provide potential applications in bone tissue regeneration.
Collapse
Affiliation(s)
- Liujia Lan
- School of Textile and Clothing, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 China
| | - Qian Zhang
- School of Textile and Clothing, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 China
| | - Huiyun Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine Beijing 100078 China
| | - Xiaochuan Yang
- School of Textile and Clothing, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 China
| | - Suying Li
- School of Textile and Clothing, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 China
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yi Luo
- School of Textile and Clothing, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 China
| | - Du Nie
- School of Textile and Clothing, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 China
| | - Guangyu Zhang
- School of Textile and Clothing, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 China
| | - Jiamu Dai
- School of Textile and Clothing, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University Nantong 226001 China
| |
Collapse
|
8
|
Gu Y, Miao F, Liu K, Su Y, Wei Y, Hu Y, Lian X, Han W, Chen W, Huang D. Fabrication of gelatin methacryloyl/graphene oxide conductive hydrogel for bone repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2076-2090. [PMID: 37212466 DOI: 10.1080/09205063.2023.2217063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
The ideal bone repair materials possess a series of properties, such as injectability, good mechanical properties and bone inducibility. In the present study, gelatin methacryloyl (GelMA) and graphene oxide (GO) were selected to prepare conductive hydrogel by changing the concentration of GelMA and GO during the cross-link process. The effects of different contents of GelMA and GO to the hydrogel performance were investigated. The results showed that the mechanical properties of the hydrogel kept 16.37 ± 1.89 KPa after adding 0.1% GO, while the conductivity was improved to 1.36 ± 0.09 μS/cm. The porosity of hydrogel before and after mineralization could reach more than 90%. The mechanical properties of mineralized hydrogel was improved significantly, could reach 26.38 ± 2.29 KPa. Cell experiments indicated that the mineralized hydrogel with electrical stimulation obviously improve the alkaline phosphatase activity of the cells. GelMA/GO conductive hydrogel could be a promising candidate for bone repair and bone tissue engineering.
Collapse
Affiliation(s)
- Yu Gu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Fenyan Miao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kejun Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yimeng Su
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Weimo Han
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, PR China
| |
Collapse
|
9
|
Gharibshahian M, Salehi M, Beheshtizadeh N, Kamalabadi-Farahani M, Atashi A, Nourbakhsh MS, Alizadeh M. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1168504. [PMID: 37469447 PMCID: PMC10353441 DOI: 10.3389/fbioe.2023.1168504] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Atashi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
10
|
Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Radha Sachan
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G. Warkar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
11
|
Nahorniak M, Pasetto P, Greneche JM, Samaryk V, Auguste S, Rousseau A, Nosova N, Varvarenko S. Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:11-22. [PMID: 36703905 PMCID: PMC9830496 DOI: 10.3762/bjnano.14.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Different iron oxides (i.e., magnetite, maghemite, goethite, wüstite), particularly nanosized particles, show distinct effects on living organisms. Thus, it is of primary importance for their biomedical applications that the morphology and phase-structural state of these materials are investigated. The aim of this work was to obtain magnetic nanoparticles in a single reactor using Fe(III) acetylacetonate as the initial precursor for the synthesis of Fe(III) oleate or Fe(III) undecylate followed by their thermolysis in situ. We proposed a new approach, according to which the essential magnetite precursor (a complex salt of higher acids - Fe(III) alkanoates) is obtained in a solvent with a high boiling point via displacement reaction of acetylacetone with a higher acid from Fe(III) acetylacetonate during its elimination from the reaction mixture under vacuum conditions. Magnetic nanoparticles (NPM) were characterized in terms of morphology, hydrodynamic diameter, and composition via several techniques, such as transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, Fourier-transform infrared spectroscopy/attenuated total reflectance, 57Fe Mössbauer spectroscopy, and X-ray diffraction. The effect of unsaturated oleic (OA) and undecylenic (UA) acids, which are both used as a reagent and as a nanoparticle stabilizer, as well as the influence of their ratio to Fe(III) acetylacetonate on the properties of particles were investigated. Stable dispersions of NPM were obtained in 1-octadecene within the OA or UA ratio from 3.3 mol to 1 mol of acetylacetonate and up to 5.5 mol/mol. Below the mentioned limit, NPM dispersions were colloidally unstable, and at higher ratios no NPM were formed which could be precipitated by an applied magnetic field. Monodisperse nanoparticles of iron oxides were synthesized with a diameter of 8-13 nm and 11-16 nm using OA and UA, respectively. The organic shell that enables the particle to be dispersed in organic media, in the case of oleic acid, covers their inorganic core only with a layer similar to the monomolecular layer, whereas the undecylenic acid forms a thicker layer, which is 65% of the particle mass. The result is a significantly different resistance to oxidation of the nanoparticle inorganic cores. The core of the particles synthesized using oleic acid is composed of more than 90% of maghemite. When undecylenic acid is used for the synthesis, the core is composed of 75% of magnetite.
Collapse
Affiliation(s)
- Mykhailo Nahorniak
- Organic Chemistry department, Lviv Polytechnic National University, Bandera street 12, 79013, Lviv, Ukraine
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pamela Pasetto
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS − Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Jean-Marc Greneche
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS − Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Volodymyr Samaryk
- Organic Chemistry department, Lviv Polytechnic National University, Bandera street 12, 79013, Lviv, Ukraine
| | - Sandy Auguste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS − Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Anthony Rousseau
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS − Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Nataliya Nosova
- Organic Chemistry department, Lviv Polytechnic National University, Bandera street 12, 79013, Lviv, Ukraine
| | - Serhii Varvarenko
- Organic Chemistry department, Lviv Polytechnic National University, Bandera street 12, 79013, Lviv, Ukraine
| |
Collapse
|
12
|
Cojocaru FD, Balan V, Verestiuc L. Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects. Int J Mol Sci 2022; 23:16190. [PMID: 36555827 PMCID: PMC9788029 DOI: 10.3390/ijms232416190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.
Collapse
Affiliation(s)
| | | | - Liliana Verestiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| |
Collapse
|
13
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
14
|
Zheng S, Tian Y, Ouyang J, Shen Y, Wang X, Luan J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem 2022; 10:990362. [PMID: 36171994 PMCID: PMC9510755 DOI: 10.3389/fchem.2022.990362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Carbon nanomaterials are some of the state-of-the-art materials used in drug-delivery and tissue-engineering research. Compared with traditional materials, carbon nanomaterials have the advantages of large specific surface areas and unique properties and are more suitable for use in drug delivery and tissue engineering after modification. Their characteristics, such as high drug loading and tissue loading, good biocompatibility, good targeting and long duration of action, indicate their great development potential for biomedical applications. In this paper, the synthesis and application of carbon dots (CDs), carbon nanotubes (CNTs) and graphene in drug delivery and tissue engineering are reviewed in detail. In this review, we discuss the current research focus and existing problems of carbon nanomaterials in order to provide a reference for the safe and effective application of carbon nanomaterials in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shaolie Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuan Tian
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Ouyang
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yuan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| |
Collapse
|
15
|
Cerqueira M, Belmonte-Reche E, Gallo J, Baltazar F, Bañobre-López M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022; 14:pharmaceutics14030506. [PMID: 35335882 PMCID: PMC8950239 DOI: 10.3390/pharmaceutics14030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is currently a leading cause of death worldwide. The World Health Organization estimates an increase of 60% in the global cancer incidence in the next two decades. The inefficiency of the currently available therapies has prompted an urgent effort to develop new strategies that enable early diagnosis and improve response to treatment. Nanomedicine formulations can improve the pharmacokinetics and pharmacodynamics of conventional therapies and result in optimized cancer treatments. In particular, theranostic formulations aim at addressing the high heterogeneity of tumors and metastases by integrating imaging properties that enable a non-invasive and quantitative assessment of tumor targeting efficiency, drug delivery, and eventually the monitoring of the response to treatment. However, in order to exploit their full potential, the promising results observed in preclinical stages need to achieve clinical translation. Despite the significant number of available functionalization strategies, targeting efficiency is currently one of the major limitations of advanced nanomedicines in the oncology area, highlighting the need for more efficient nanoformulation designs that provide them with selectivity for precise cancer types and tumoral tissue. Under this current need, this review provides an overview of the strategies currently applied in the cancer theranostics field using magnetic nanoparticles (MNPs) and solid lipid nanoparticles (SLNs), where both nanocarriers have recently entered the clinical trials stage. The integration of these formulations into magnetic solid lipid nanoparticles—with different composition and phenotypic activity—constitutes a new generation of theranostic nanomedicines with great potential for the selective, controlled, and safe delivery of chemotherapy.
Collapse
Affiliation(s)
- Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Efres Belmonte-Reche
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (F.B.); (M.B.-L.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
- Correspondence: (F.B.); (M.B.-L.)
| |
Collapse
|
16
|
Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rafael Lemos
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- Centre of Physics (CFUM) University of Minho Campus de Gualtar 4710-057 Braga Portugal
| | - F. Raquel Maia
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
17
|
任 义, 黄 若, 王 存, 马 亚, 李 晓. [Advantages and challenges of carbon nanotubes as bone repair materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:271-277. [PMID: 33719233 PMCID: PMC8171765 DOI: 10.7507/1002-1892.202009073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Indexed: 11/03/2022]
Abstract
With the in-depth research on bone repair process, and the progress in bone repair materials preparation and characterization, a variety of artificial bone substitutes have been fully developed in the treatment of bone related diseases such as bone defects. However, the current various natural or synthetic biomaterials are still unable to achieve the structure and properties of natural bone. Carbon nanotubes (CNTs) have provided a new direction for the development of new materials in the field of bone repair due to their excellent structural stability, mechanical properties, and functional group modifiability. Moreover, CNTs and their composites have broad prospects in the design of bone repair materials and as drug delivery carriers. This paper describes the advantages of CNTs related to bone tissue regeneration from the aspects of morphology, chemistry, mechanics, electromagnetism, and biosafety, as well as the application of CNTs in drug delivery carriers and reinforcement components of scaffold materials. In addition, the potential problems and prospects of CNTs in bone regenerative medicine are discussed.
Collapse
Affiliation(s)
- 义行 任
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 若愚 黄
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 存阳 王
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 亚洁 马
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| | - 晓明 李
- 保定市第四中心医院骨科(河北保定 072350)Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding Hebei, 072350, P.R.China
| |
Collapse
|
18
|
Bettini S, Bonfrate V, Valli L, Giancane G. Paramagnetic Functionalization of Biocompatible Scaffolds for Biomedical Applications: A Perspective. Bioengineering (Basel) 2020; 7:E153. [PMID: 33260520 PMCID: PMC7711469 DOI: 10.3390/bioengineering7040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023] Open
Abstract
The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Valentina Bonfrate
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| |
Collapse
|
19
|
Lopez de Armentia S, del Real JC, Paz E, Dunne N. Advances in Biodegradable 3D Printed Scaffolds with Carbon-Based Nanomaterials for Bone Regeneration. MATERIALS 2020; 13:ma13225083. [PMID: 33187218 PMCID: PMC7697295 DOI: 10.3390/ma13225083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023]
Abstract
Bone possesses an inherent capacity to fix itself. However, when a defect larger than a critical size appears, external solutions must be applied. Traditionally, an autograft has been the most used solution in these situations. However, it presents some issues such as donor-site morbidity. In this context, porous biodegradable scaffolds have emerged as an interesting solution. They act as external support for cell growth and degrade when the defect is repaired. For an adequate performance, these scaffolds must meet specific requirements: biocompatibility, interconnected porosity, mechanical properties and biodegradability. To obtain the required porosity, many methods have conventionally been used (e.g., electrospinning, freeze-drying and salt-leaching). However, from the development of additive manufacturing methods a promising solution for this application has been proposed since such methods allow the complete customisation and control of scaffold geometry and porosity. Furthermore, carbon-based nanomaterials present the potential to impart osteoconductivity and antimicrobial properties and reinforce the matrix from a mechanical perspective. These properties make them ideal for use as nanomaterials to improve the properties and performance of scaffolds for bone tissue engineering. This work explores the potential research opportunities and challenges of 3D printed biodegradable composite-based scaffolds containing carbon-based nanomaterials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sara Lopez de Armentia
- Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain; (S.L.d.A.); (J.C.d.R.)
| | - Juan Carlos del Real
- Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain; (S.L.d.A.); (J.C.d.R.)
| | - Eva Paz
- Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain; (S.L.d.A.); (J.C.d.R.)
- Correspondence: (E.P.); (N.D.)
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (E.P.); (N.D.)
| |
Collapse
|
20
|
Abstract
Abstract
Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.
Collapse
|
21
|
Fan D, Wang Q, Zhu T, Wang H, Liu B, Wang Y, Liu Z, Liu X, Fan D, Wang X. Recent Advances of Magnetic Nanomaterials in Bone Tissue Repair. Front Chem 2020; 8:745. [PMID: 33102429 PMCID: PMC7545026 DOI: 10.3389/fchem.2020.00745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
The magnetic field has been proven to enhance bone tissue repair by affecting cell metabolic behavior. Magnetic nanoparticles are used as biomaterials due to their unique magnetic properties and good biocompatibility. Through endocytosis, entering the cell makes it easier to affect the physiological function of the cell. Once the magnetic particles are exposed to an external magnetic field, they will be rapidly magnetized. The magnetic particles and the magnetic field work together to enhance the effectiveness of their bone tissue repair treatment. This article reviews the common synthesis methods, the mechanism, and application of magnetic nanomaterials in the field of bone tissue repair.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedic, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Tengjiao Zhu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bingchuan Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China
| | - Yifan Wang
- CED Education, North Carolina State University, Raleigh, NC, United States
| | - Zhongjun Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Dongwei Fan
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Kim M, Jee SC, Sung JS, Kadam AA. Supermagnetic Sugarcane Bagasse Hydrochar for Enhanced Osteoconduction in Human Adipose Tissue-Derived Mesenchymal Stem Cells. NANOMATERIALS 2020; 10:nano10091793. [PMID: 32916934 PMCID: PMC7557583 DOI: 10.3390/nano10091793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Hydrothermally carbonized sugarcane bagasse (SCB) has exceptional surface properties. Looking at the huge amount of SCB produced, its biocompatible nature, cheap-cost for carbonization, and its easy functionalization can give impeccable nano-biomaterials for tissue engineering applications. Herein, sugarcane bagasse was converted into hydrochar (SCB-H) by hydrothermal carbonation. The SCB-H produced was further modified with iron oxide (Fe3O4) nanoparticles (denoted as SCB-H@Fe3O4). Facile synthesized nano-bio-composites were characterized by SEM, HR-TEM, XRD, FT-IR, XPS, TGA, and VSM analysis. Bare Fe3O4 nanoparticles (NPs), SCB-H, and SCB-H@Fe3O4 were tested for cytocompatibility and osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells (hADMSCs). The results confirmed the cytocompatible and nontoxic nature of SCB-H@Fe3O4. SCB-H did not show enhancement in osteoconduction, whilst on the other hand, Fe3O4 NPs exhibited a 0.5-fold increase in the osteoconduction of hADMSCs. However, SCB-H@Fe3O4 demonstrated an excellent enhancement in osteoconduction of a 3-fold increase over the control, and a 2.5-fold increase over the bare Fe3O4 NPs. Correspondingly, the expression patterns assessment of osteoconduction marker genes (ALP, OCN, and RUNX2) confirmed the osteoconductive enhancement by SCB-H@Fe3O4. In the proposed mechanism, the surface of SCB-H@Fe3O4 might provide a unique topology, and anchoring to receptors of hADMSCs leads to accelerated osteogenesis. In conclusion, agriculture waste-derived sustainable materials like “SCB-H@Fe3O44” can be potentially applied in highly valued medicinal applications of stem cell differentiation.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (M.K.); (S.-C.J.); (J.-S.S.)
| | - Seung-Cheol Jee
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (M.K.); (S.-C.J.); (J.-S.S.)
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (M.K.); (S.-C.J.); (J.-S.S.)
| | - Avinash A. Kadam
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea
- Correspondence: or ; Tel.: +82-31-961-5616; Fax: 82-31-961-5108
| |
Collapse
|
23
|
Kołodziej A, Wesełucha-Birczyńska A, Świętek M, Horák D, Błażewicz M. A 2D-Raman correlation spectroscopy analysis of the polymeric nanocomposites with magnetic nanoparticles. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Świętek M, Panchuk R, Skorokhyd N, Černoch P, Finiuk N, Klyuchivska O, Hrubý M, Molčan M, Berger W, Trousil J, Stoika R, Horák D. Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Front Chem 2020; 8:205. [PMID: 32328477 PMCID: PMC7161697 DOI: 10.3389/fchem.2020.00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic and temperature-sensitive solid lipid particles (mag. SLPs) were prepared in the presence of oleic acid-coated iron oxide (IO-OA) nanoparticles with 1-tetradecanol and poly(ethylene oxide)-block-poly(ε-caprolactone) as lipid and stabilizing surfactant-like agents, respectively. The particles, typically ~850 nm in hydrodynamic size, showed heat dissipation under the applied alternating magnetic field. Cytotoxic activity of the mag.SLPs, non-magnetic SLPs, and iron oxide nanoparticles was compared concerning the mammalian cancer cell lines and their drug-resistant counterparts using trypan blue exclusion test and MTT assay. The mag.SLPs exhibited dose-dependent cytotoxicity against human leukemia cell lines growing in suspension (Jurkat and HL-60/wt), as well as the doxorubicin (Dox)- and vincristine-resistant HL-60 sublines. The mag.SLPs showed higher cytotoxicity toward drug-resistant sublines as compared to Dox. The human glioblastoma cell line U251 growing in a monolayer culture was also sensitive to mag.SLPs cytotoxicity. Staining of U251 cells with the fluorescent dyes Hoechst 33342 and propidium iodide (PI) revealed that mag.SLPs treatment resulted in an increased number of cells with condensed chromatin and/or fragmented nuclei as well as with blebbing of the plasma membranes. While the Hoechst 33342 staining of cell suggested the pro-apoptotic activity of the particles, the PI staining indicated the pro-necrotic changes in the target cells. These conclusions were confirmed by Western blot analysis of apoptosis-related proteins, study of DNA fragmentation (DNA laddering due to the inter-nucleosomal cleavage and DNA comets due to single strand breaks), as well as by FACS analysis of the patterns of cell cycle distribution (pre-G1 phase) and Annexin V/PI staining of the treated Jurkat cells. The induction of apoptosis or necrosis by the particles used to treat Jurkat cells depended on the dose of the particles. Production of the reactive oxygen species (ROS) was proposed as a potential mechanism of mag.SLPs-induced cytotoxicity. Accordingly, hydrogen peroxide and superoxide radical levels in mag.SLPs-treated Jurkat leukemic cells were increased by ~20–40 and ~70%, respectively. In contrast, the non-magnetic SLPs and neat iron oxides did not influence ROS levels significantly. Thus, the developed mag.SLPs can be used for effective killing of human tumor cells, including drug-resistant ones.
Collapse
Affiliation(s)
- Małgorzata Świętek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Rostyslav Panchuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Nadia Skorokhyd
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Peter Černoch
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Olha Klyuchivska
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Martin Hrubý
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Matúš Molčan
- Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Walter Berger
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Jirí Trousil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Science of Ukraine, Lviv, Ukraine
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|