1
|
Cherqaoui A, Cao QN, Gatto ML, Paternoster C, Mengucci P, Mantovani D. Degradation behavior of austenite, ferrite, and martensite present in biodegradable Fe-based alloys in three protein-rich pseudo-physiological solutions. Bioact Mater 2024; 41:96-107. [PMID: 39734418 PMCID: PMC11681225 DOI: 10.1016/j.bioactmat.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 12/31/2024] Open
Abstract
This study investigates the degradation behavior of three distinct Fe-based alloys immersed in three pseudo-physiological solutions. These alloys, which have varied Mn and C contents, include a commercially available Fe-0.15C alloy, namely Fe-C, and two newly developed alloys, that is Fe-5Mn-0.2C (namely Fe-5Mn) and Fe-18Mn-0.6C (namely Fe-18Mn). The aim was to understand the effect of alloying elements and the testing solution on the in - vitro degradation behavior of these Fe-based materials. Static immersion degradation and potentiodynamic corrosion tests were carried out using three pseudo-physiological solutions with albumin supply, that is modified Hanks' saline solution (MHSS), phosphate buffered saline solution (PBS), and sodium chloride solution (NaCl). After two weeks of static immersion, the results revealed that Fe-5Mn, characterized by a mixture of ferrite and martensite, showed the highest degradation rate, while Fe-C, composed solely of ferrite, showed the lowest rate of degradation. The predominant degradation products in MHSS and PBS were phosphates and carbonates. In PBS, these products formed a remarkably stable protective layer on the surface, contributing to the lowest degradation rate. In contrast, porous hydroxides appeared as the main degradation products for samples immersed in NaCl solution, leading to the highest degradation rate. These results provided important insights into the customization of Fe-Mn-C alloys for a range of biomedical applications, meeting a variety of clinical requirements, and highlighting the considerable potential of Fe-Mn-C alloys for biomedical applications.
Collapse
Affiliation(s)
- Abdelhakim Cherqaoui
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, Canada
| | - Quang Nguyen Cao
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, Canada
| | - Maria Laura Gatto
- Department DIISM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy
| | - Carlo Paternoster
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, Canada
| | - Paolo Mengucci
- Department SIMAU & UdR INSTM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, Canada
| |
Collapse
|
2
|
Kim SB, Kim CH, Lee SY, Park SJ. Carbon materials and their metal composites for biomedical applications: A short review. NANOSCALE 2024; 16:16313-16328. [PMID: 39110002 DOI: 10.1039/d4nr02059f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Carbon materials and their hybrid metal composites have garnered significant attention in biomedical applications due to their exceptional biocompatibility. This biocompatibility arises from their inherent chemical stability and low toxicity within biological systems. This review offers a comprehensive overview of carbon nanomaterials and their metal composites, emphasizing their biocompatibility-focused applications, including drug delivery, bioimaging, biosensing, and tissue engineering. The paper outlines advancements in surface modifications, coatings, and functionalization techniques designed to enhance the biocompatibility of carbon materials, ensuring minimal adverse effects in biological systems. A comprehensive investigation into hybrid composites integrating carbon nanomaterials is conducted, categorizing them as fullerenes, carbon quantum dots, carbon nanotubes, carbon nanofibers, graphene, and diamond-like carbon. The concluding section addresses regulatory considerations and challenges associated with integrating carbon materials into medical devices. This review culminates by providing insights into current achievements, challenges, and future directions, underscoring the pivotal role of carbon nanomaterials and their metal composites in advancing biocompatible applications.
Collapse
Affiliation(s)
- Su-Bin Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
3
|
Saberi A, Baltatu MS, Vizureanu P. Recent Advances in Magnesium-Magnesium Oxide Nanoparticle Composites for Biomedical Applications. Bioengineering (Basel) 2024; 11:508. [PMID: 38790374 PMCID: PMC11117911 DOI: 10.3390/bioengineering11050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Magnesium (Mg) is considered an attractive option for orthopedic applications due to its density and elastic modulus close to the natural bone of the body, as well as biodegradability and good tensile strength. However, it faces serious challenges, including a high degradation rate and, as a result, a loss of mechanical properties during long periods of exposure to the biological environment. Also, among its other weaknesses, it can be mentioned that it does not deal with bacterial biofilms. It has been found that making composites by synergizing its various components can be an efficient way to improve its properties. Among metal oxide nanoparticles, magnesium oxide nanoparticles (MgO NPs) have distinct physicochemical and biological properties, including biocompatibility, biodegradability, high bioactivity, significant antibacterial properties, and good mechanical properties, which make it a good choice as a reinforcement in composites. However, the lack of comprehensive understanding of the effectiveness of Mg NPs as Mg matrix reinforcements in mechanical, corrosion, and biological fields is considered a challenge in their application. While introducing the role of MgO NPs in medical fields, this article summarizes the most important results of recent research on the mechanical, corrosion, and biological performance of Mg/MgO composites.
Collapse
Affiliation(s)
- Abbas Saberi
- Department of Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania;
| | - Petrica Vizureanu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania;
| |
Collapse
|
4
|
Zhang Y, Roux C, Rouchaud A, Meddahi-Pellé A, Gueguen V, Mangeney C, Sun F, Pavon-Djavid G, Luo Y. Recent advances in Fe-based bioresorbable stents: Materials design and biosafety. Bioact Mater 2024; 31:333-354. [PMID: 37663617 PMCID: PMC10474570 DOI: 10.1016/j.bioactmat.2023.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Fe-based materials have received more and more interests in recent years as candidates to fabricate bioresorbable stents due to their appropriate mechanical properties and biocompatibility. However, the low degradation rate of Fe is a serious limitation for such application. To overcome this critical issue, many efforts have been devoted to accelerate the corrosion rate of Fe-based stents, through the structural and surface modification of Fe matrix. As stents are implantable devices, the released corrosion products (Fe2+ ions) in vessels may alter the metabolism, by generating reactive oxygen species (ROS), which might in turn impact the biosafety of Fe-based stents. These considerations emphasize the importance of combining knowledge in both materials and biological science for the development of efficient and safe Fe-based stents, although there are still only limited numbers of reviews regarding this interdisciplinary field. This review aims to provide a concise overview of the main strategies developed so far to design Fe-based stents with accelerated degradation, highlighting the fundamental mechanisms of corrosion and the methods to study them as well as the reported approaches to accelerate the corrosion rates. These approaches will be divided into four main sections, focusing on (i) increased active surface areas, (ii) tailored microstructures, (iii) creation of galvanic reactions (by alloying, ion implantation or surface coating of noble metals) and (iv) decreased local pH induced by degradable surface organic layers. Recent advances in the evaluation of the in vitro biocompatibility of the final materials and ongoing in vivo tests are also provided.
Collapse
Affiliation(s)
- Yang Zhang
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Charles Roux
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
| | | | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| | - Fan Sun
- PSL Université, Chimie Paris Tech, IRCP, CNRS UMR 8247, 11, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France
| |
Collapse
|
5
|
Wang C, Wang Y, Liu J, Li F, Gai P. Nanozyme-Based Biofuel Cell Ingeniously Coupled with Luminol Chemiluminescence System through In Situ Co-Reactant Generation for Dual-Signal Biosensing. Anal Chem 2023; 95:15763-15768. [PMID: 37816228 DOI: 10.1021/acs.analchem.3c03270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Classical luminol-based chemiluminescence (CL) is the process of emitting light enhanced by the addition of coreactant hydrogen peroxide (H2O2). To address the instability issue of H2O2 decomposition, herein, we proposed a nanozyme-based biofuel cell (BFC) ingeniously coupled with a luminol CL system via in situ generation of H2O2. Specifically, the gold nanoparticle (AuNP) nanozyme with glucose oxidase-like activity can act as the anodic enzyme of BFC to catalyze the oxidation of glucose to produce H2O2 and electrons. In this case, H2O2 as a coreactant enhanced the CL intensity and the cathode of the BFC obtained electrons to generate the open circuit voltage (EOCV) signals. As a result, a dual-signal biosensing platform was successfully constructed. Interestingly, the AuNPs-catalyzed system operates in an alkaline medium, which precisely meets the pH requirement for luminol luminescence. Such a BFC-CL system not only greatly lessens the effect of unstable exogenous H2O2 on the signal stability but also enhances the CL of luminol. Furthermore, both CL and EOCV signals present a positive correlation with the glucose concentration. Therefore, this novel BFC-CL system shows good performance for dual-signal biosensing, which would serve as a valuable guideline for the design and application of BFC-based self-powered or CL biosensors.
Collapse
Affiliation(s)
- Cui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yuqing Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Junhua Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
6
|
Yu C, Liu X, Zhang J, Chao Y, Jia X, Wang C, Wallace GG. A Battery Method to Enhance the Degradation of Iron Stent and Regulating the Effect on Living Cells. SMALL METHODS 2022; 6:e2200344. [PMID: 35689331 DOI: 10.1002/smtd.202200344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Iron is a promising material for cardiovascular stent applications, however, the low biodegradation rate presents a challenge. Here, a dynamic method to improve the degradation rate of iron and simultaneously deliver electrical energy that could potentially inhibit cell proliferation on the device is reported. It is realized by pairing iron with a biocompatible hydrogel cathode in a cell culture media-based electrolyte forming an iron-air battery. This system does not show cytotoxicity to human adipose-stem cells over a period of 21 days but inhibits cell proliferation. The combination of enhanced iron degradation and inhibited cell proliferation by this dynamic method suggests it might be an approach for restenosis inhibition of biodegradable stents.
Collapse
Affiliation(s)
- Changchun Yu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Xiao Liu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Jiahao Zhang
- College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Yunfeng Chao
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2500, Australia
| |
Collapse
|
7
|
Liu WC, Chang CH, Chen CH, Lu CK, Ma CH, Huang SI, Fan WL, Shen HH, Tsai PI, Yang KY, Fu YC. 3D-Printed Double-Helical Biodegradable Iron Suture Anchor: A Rabbit Rotator Cuff Tear Model. MATERIALS 2022; 15:ma15082801. [PMID: 35454494 PMCID: PMC9027822 DOI: 10.3390/ma15082801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
Suture anchors are extensively used in rotator cuff tear surgery. With the advancement of three-dimensional printing technology, biodegradable metal has been developed for orthopedic applications. This study adopted three-dimensional-printed biodegradable Fe suture anchors with double-helical threads and commercialized non-vented screw-type Ti suture anchors with a tapered tip in the experimental and control groups, respectively. The in vitro study showed that the Fe and Ti suture anchors exhibited a similar ultimate failure load in 20-pound-per-cubic-foot polyurethane foam blocks and rabbit bone. In static immersion tests, the corrosion rate of Fe suture anchors was 0.049 ± 0.002 mm/year. The in vivo study was performed on New Zealand white rabbits and SAs were employed to reattach the ruptured supraspinatus tendon. The in vivo ultimate failure load of the Fe suture anchors was superior to that of the Ti suture anchors at 6 weeks. Micro-computed tomography showed that the bone volume fraction and bone surface density in the Fe suture anchors group 2 and 6 weeks after surgery were superior, and the histology confirmed that the increased bone volume around the anchor was attributable to mineralized osteocytes. The three-dimensional-printed Fe suture anchors outperformed the currently used Ti suture anchors.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Hau Chang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Chung-Hwan Chen
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Orthopedic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80420, Taiwan
| | - Chun-Kuan Lu
- Department of Orthopedic Surgery, Park One International Hospital, Kaohsiung 81367, Taiwan;
| | - Chun-Hsien Ma
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Shin-I Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Wei-Lun Fan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Pei-I Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Kuo-Yi Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
- Correspondence: (K.-Y.Y.); (Y.-C.F.)
| | - Yin-Chih Fu
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (K.-Y.Y.); (Y.-C.F.)
| |
Collapse
|
8
|
Mishra DK, Pandey PM. Corrosion behavior and degradation mechanism of micro-extruded 3D printed ordered pore topological Fe scaffolds. J Biomed Mater Res B Appl Biomater 2022; 110:1439-1459. [PMID: 35113484 DOI: 10.1002/jbm.b.35011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022]
Abstract
The fabrication of ordered pore topological structures (OPTS) with an improved biodegradation profile offers unique attributes required for bone reconstruction. These attributes consisted of fully interconnected porous structure, bone-mimicking mechanical properties, and the possibility of fully regenerating bony defects. Most of the biomaterials based on magnesium were associated with the problem of too fast degradation rate. Here, the present aim was based on the fabrication of ordered pore topological Fe structures (OPTFS) using micro-extrusion-based 3D printing followed by pressureless microwave sintering. Two different kinds of pore features namely randomly distributed interconnected micropores and designed interconnected macropores were investigated. Static in vitro degradation results inferred that the H-2 mm pore size of hexagonal based ordered pore topological Fe structures (H-OPTFS) exhibited the highest degradation rate of 6.45 mg cm-2 day-1 on the 28th day. Electrochemical results revealed that the corrosion current density of the T-1 Fe sample with 44% porosity increased nearly by a multiple of three times as compared to dense Fe (from 16.79 to 44.63 μA cm - 2 ) . Similarly, these results showed more significance in H-2 mm pores size (with highest 66% porosity) of H-OPTFS as compared to H-1.75 mm and H-1.5 mm pore size of H-OPTFS (≈2 times higher degradation rate than H-1.5 mm pore size). Moreover, the MG63 osteoblast cell line was adhered to and proliferated significantly throughout the surface and illustrated more than 80% cell viability of the prepared porous Fe scaffold. The analyzed results have shown the potential of fabricated OPTFS could be considered for biomedical applications.
Collapse
Affiliation(s)
- Dipesh Kumar Mishra
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| | - Pulak Mohan Pandey
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
9
|
Putra N, Leeflang M, Minneboo M, Taheri P, Fratila-Apachitei L, Mol J, Zhou J, Zadpoor A. Extrusion-based 3D printed biodegradable porous iron. Acta Biomater 2021; 121:741-756. [PMID: 33221501 DOI: 10.1016/j.actbio.2020.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
Extrusion-based 3D printing followed by debinding and sintering is a powerful approach that allows for the fabrication of porous scaffolds from materials (or material combinations) that are otherwise very challenging to process using other additive manufacturing techniques. Iron is one of the materials that have been recently shown to be amenable to processing using this approach. Indeed, a fully interconnected porous design has the potential of resolving the fundamental issue regarding bulk iron, namely a very low rate of biodegradation. However, no extensive evaluation of the biodegradation behavior and properties of porous iron scaffolds made by extrusion-based 3D printing has been reported. Therefore, the in vitro biodegradation behavior, electrochemical response, evolution of mechanical properties along with biodegradation, and responses of an osteoblastic cell line to the 3D printed iron scaffolds were studied. An ink formulation, as well as matching 3D printing, debinding and sintering conditions, was developed to create iron scaffolds with a porosity of 67%, a pore interconnectivity of 96%, and a strut density of 89% after sintering. X-ray diffracometry confirmed the presence of the α-iron phase in the scaffolds without any residuals from the rest of the ink. Owing to the presence of geometrically designed macropores and random micropores in the struts, the in vitro corrosion rate of the scaffolds was much improved as compared to the bulk counterpart, with 7% mass loss after 28 days. The mechanical properties of the scaffolds remained in the range of those of trabecular bone despite 28 days of in vitro biodegradation. The direct culture of MC3T3-E1 preosteoblasts on the scaffolds led to a substantial reduction in living cell count, caused by a high concentration of iron ions, as revealed by the indirect assays. On the other hand, the ability of the cells to spread and form filopodia indicated the cytocompatibility of the corrosion products. Taken together, this study shows the great potential of extrusion-based 3D printed porous iron to be further developed as a biodegradable bone substituting biomaterial.
Collapse
|
10
|
Yan M, Chen R, Zhang C, Liu Q, Sun G, Liu J, Yu J, Lin C, Wang J. Fully Repairable Slippery Organogel Surfaces with Reconfigurable Paraffin-Based Framework for Universal Antiadhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39807-39816. [PMID: 32805942 DOI: 10.1021/acsami.0c09915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing a slippery lubricant-infused surface (SLIS) whose internal microstructure and surface properties can be fully repaired helps to improve its property stability and extend technological implications but has presented a huge challenge. A class of fully repairable slippery organogel surfaces (SOSs), which uses microstructured paraffin as reconfigurable supporting structure and silicone oil as lubricant dispersion medium, is reported here. Attributed to nearly 90 wt % of silicone oil stored in the slippery organogel system and good compatibility with the paraffin-based framework, SOSs combine continuous lubricity and reliable lubricant storage stability. Furthermore, the thermally sensitive paraffin-based framework can quickly switch between solid supporting structure and liquid solution according to the ambient temperature, thereby achieving rapid regeneration of microstructure. This unique system consisting of reconfigurable framework and flowable lubricant derives two types of repairs aimed at varying degrees of damage. Significantly, the easy-to-prepare SOS, on the other hand, allows the adoption of various substrate surfaces for different purposes to form an antiadhesion coating and exhibits excellent antistain, antialgae, and anti-icing performance, thus greatly improving the flexibility of such materials in practical applications.
Collapse
Affiliation(s)
- Minglong Yan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- HIT (Hainan) Military-Civilian Integration Innovation Research Institute Co., Ltd, Hainan, 572427, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Gaohui Sun
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
11
|
Askari E, Cengiz I, Alves J, Henriques B, Flores P, Fredel M, Reis R, Oliveira J, Silva F, Mesquita-Guimarães J. Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2020; 102:103516. [DOI: 10.1016/j.jmbbm.2019.103516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
|
12
|
Shuai C, Li S, Peng S, Yang Y, Gao C. Hydrolytic Expansion Induces Corrosion Propagation for Increased Fe Biodegradation. Int J Bioprint 2020; 6:248. [PMID: 32782985 PMCID: PMC7415857 DOI: 10.18063/ijb.v6i1.248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/02/2020] [Indexed: 01/23/2023] Open
Abstract
Fe is regarded as a promising bone implant material due to inherent degradability and high mechanical strength, but its degradation rate is too slow to match the healing rate of bone. In this work, hydrolytic expansion was cleverly exploited to accelerate Fe degradation. Concretely, hydrolyzable Mg2Si was incorporated into Fe matrix through selective laser melting and readily hydrolyzed in a physiological environment, thereby exposing more surface area of Fe matrix to the solution. Moreover, the gaseous hydrolytic products of Mg2Si acted as an expanding agent and cracked the dense degradation product layers of Fe matrix, which offered rapid access for solution invasion and corrosion propagation toward the interior of Fe matrix. This resulted in the breakdown of protective degradation product layers and even the direct peeling off of Fe matrix. Consequently, the degradation rate for Fe/Mg2Si composites (0.33 mm/y) was significantly improved in comparison with that of Fe (0.12 mm/y). Meanwhile, Fe/Mg2Si composites were found to enable the growth and proliferation of MG-63 cells, showing good cytocompatibility. This study indicated that hydrolytic expansion may be an effective strategy to accelerate the degradation of Fe-based implants.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Sheng Li
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Youwen Yang
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chengde Gao
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|