1
|
Amukarimi S, Mozafari M. Biodegradable Magnesium Biomaterials-Road to the Clinic. Bioengineering (Basel) 2022; 9:107. [PMID: 35324796 PMCID: PMC8945684 DOI: 10.3390/bioengineering9030107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
In recent decades, we have witnessed radical changes in the use of permanent biomaterials. The intrinsic ability of magnesium (Mg) and its alloys to degrade without releasing toxic degradation products has led to a vast range of applications in the biomedical field, including cardiovascular stents, musculoskeletal, and orthopedic applications. With the use of biodegradable Mg biomaterials, patients would not suffer second surgery and surgical pain anymore. Be that as it may, the main drawbacks of these biomaterials are the high corrosion rate and unexpected degradation in physiological environments. Since biodegradable Mg-based implants are expected to show controllable degradation and match the requirements of specific applications, various techniques, such as designing a magnesium alloy and modifying the surface characteristics, are employed to tailor the degradation rate. In this paper, some fundamentals and particular aspects of magnesium degradation in physiological environments are summarized, and approaches to control the degradation behavior of Mg-based biomaterials are presented.
Collapse
|
2
|
Guo Y, Mi J, Ye C, Ao Y, Shi M, Shan Z, Li B, Chen Z, Chen Z, Vasilev K, Xiao Y. A practical guide to promote informatics-driven efficient biotopographic material development. Bioact Mater 2022; 8:515-528. [PMID: 34541417 PMCID: PMC8433058 DOI: 10.1016/j.bioactmat.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Micro/nano topographic structures have shown great utility in many biomedical areas including cell therapies, tissue engineering, and implantable devices. Computer-assisted informatics methods hold great promise for the design of topographic structures with targeted properties for a specific medical application. To benefit from these methods, researchers and engineers require a highly reusable "one structural parameter - one set of cell responses" database. However, existing confounding factors in topographic cell culture devices seriously impede the acquisition of this kind of data. Through carefully dissecting the confounding factors and their possible reasons for emergence, we developed corresponding guideline requirements for topographic cell culture device development to remove or control the influence of such factors. Based on these requirements, we then suggested potential strategies to meet them. In this work, we also experimentally demonstrated a topographic cell culture device with controlled confounding factors based on these guideline requirements and corresponding strategies. A "guideline for the development of topographic cell culture devices" was summarized to instruct researchers to develop topographic cell culture devices with the confounding factors removed or well controlled. This guideline aims to promote the establishment of a highly reusable "one structural parameter - one set of cell responses" database that could facilitate the application of informatics methods, such as artificial intelligence, in the rational design of future biotopographic structures with high efficacy.
Collapse
Affiliation(s)
- Yuanlong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiaomei Mi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Chen Ye
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yong Ao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mengru Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhengjie Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Bingzhi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Krasimir Vasilev
- Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia
| |
Collapse
|
3
|
Zhang Y, Cao J, Wang X, Liu H, Shao Y, Chu C, Xue F, Bai J. The effect of enzymes on the in vitro degradation behavior of Mg alloy wires in simulated gastric fluid and intestinal fluid. Bioact Mater 2021; 7:217-226. [PMID: 34466728 PMCID: PMC8379480 DOI: 10.1016/j.bioactmat.2021.05.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
With an upsurge of biodegradable metal implants, the research and application of Mg alloys in the gastrointestinal environment of the digestive tract have been of great interest. Digestive enzymes, mainly pepsin in the stomach and pancreatin in the small intestine, are widespread in the gastrointestinal tract, but their effect on the degradation of Mg alloys has not been well understood. In this study, we investigated the impacts of pepsin and pancreatin on the degradation of Mg-2Zn alloy wires. The results showed that the pepsin and pancreatin had completely different even the opposite effects on the degradation of Mg, although they both affected the degradation product layer. The degradation rate of Mg wire declined with the addition of pepsin in simulated gastric fluid (SGF) but rose with the addition of pancreatin in simulated intestinal fluid (SIF). The opposite trends in degradation rate also resulted in completely different degradation morphologies in wires surface, where the pitting corrosion in SGF was inhibited because of the physical barrier effect of pepsin adsorption. In contrast, the adsorption of pancreatin affected the integrity of magnesium hydrogen phosphate film, causing a relatively uneven degraded surface. These results may help us to understand the role of different digestive enzymes in the degradation of magnesium and facilitate the development and clinical application of magnesium alloy implanted devices for the digestive tract. The pepsin in SGF and pancreatin in SIF have opposite effects on the degradation rate of Mg. Both enzymes can adsorb on the surface of Mg wire and affect the formation of the degradation layer. The physical barrier effect of pepsin adsorption retarded the pitting corrosion and corrosion rate in SGF. Adsorbed pancreatin affected the integrity of the products layer in SIF, resulting in an accelerated corrosion rate.
Collapse
Affiliation(s)
- Yue Zhang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, Jiangsu, China
| | - Jian Cao
- Peking University People's Hospital, Xi Cheng, Beijing 100044, China
| | - Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Huan Liu
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, Jiangsu, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China.,Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, Jiangsu, China
| |
Collapse
|
4
|
Zhang Y, Wu Y, Li N, Jiang Y, Qian Y, Wang L, Zhang J. Synergistic inhibition effect of L-Phenylalanine and zinc salts on chloride-induced corrosion of magnesium alloy: Experimental and theoretical investigation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Liu Y, Wang Y, Lin J, Zhou M, Yu F, Huang Y, Kang B, Wang D, Wang T, Zeng H. Alloying and brushite coating improve corrosion resistance of magnesium in a simulated physiological environment. MATERIALS TODAY COMMUNICATIONS 2021; 26:101750. [DOI: 10.1016/j.mtcomm.2020.101750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
6
|
Microroughness induced biomimetic coating for biodegradation control of magnesium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111811. [PMID: 33579455 DOI: 10.1016/j.msec.2020.111811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022]
Abstract
Herein we explore a combination of anodization induced micro-roughness and biomimetic coating on pure magnesium (Mg) metal at different applied voltages to control adhesion, biodegradation, and corrosion performance in simulated body fluid solution. The anodic film was fabricated using two different potentials, 3 and 5 V, respectively, to create microroughness on the Mg surface. The microroughened Mg surface was subsequently coated with a biomimetic silk thin film; and the characteristics of the treated Mg-substrates were evaluated using various spectroscopic, microscopic, immersion, and electrochemical techniques. A number of independent measurements, including hydrogen evolution, weight loss and electrochemical methods were employed to assess the corrosion characteristics. The silk-coated anodized samples revealed dramatically reduced degradation rate in terms of volume of hydrogen gas generation and weight loss compared to the respective anodized but uncoated, which revealed that optimized biomimetic silk-coated Mg surface (anodized at 5 V and subsequently biomimetic silk-coated ANMg5V) exhibited the best corrosion performance among all other tested samples. The ANMg5V Silk showed the highest polarization resistance (46.12 kΩ·cm2), protection efficiency (>0.99) and lowest corrosion rate (only 0.017 mm/year) relative to untreated Mg (8.457 mm/year), and anodized Mg (1.039 for anodized at 3 V and 0.986 for anodized at 5 V) surface due to the formation of a pore-free dense biomimetic protective film over Mg surface. The results of the cytotoxicity test confirm that silk-coated samples are significantly less cytotoxic compared to bare and anodized Mg samples. With enhanced corrosion resistance and cytocompatibility, silk-coated Mg could be a potential material for clinical applications.
Collapse
|
7
|
Mineralization of calcium phosphate controlled by biomimetic self-assembled peptide monolayers via surface electrostatic potentials. Bioact Mater 2020; 5:387-397. [PMID: 32258828 PMCID: PMC7113442 DOI: 10.1016/j.bioactmat.2020.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
The functions of acidic-rich domains in non-collagenous protein during biomineralization are thought to induce nucleation and control the growth of hydroxyapatite. The tripeptide Asp-Ser-Ser (DSS) repeats are the most common acidic-rich repeated unit in non-collagenous protein of dentin phosphoprotein, the functions of which have aroused extensive interests. In this study, biomimetic peptides (DSS)n (n = 2 or 3) were designed and fabricated into self-assembled monolayers (SAMs) on Au (111) surface as biomimetic organic templates to regulate hydroxyapatite (HAp) mineralization in 1.5 simulated body fluid (1.5 SBF) at 37 °C. The early mineralization processes and minerals deposited on the SAMs were characterized by X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy analyses. The SAM-DSS9/DSS9G showed the highest capacity to induce HAp nucleation and growth, followed by SAM-DSS6/DSS6G, SAM-COOH, and SAM-OH. The SAM-(DSS)n had more negative zeta potentials than SAM-COOH surface, indicating that DSS repeats contributed to the biomineralization, which not only provided strong affinity with Ca2+ ions through direct electrostatic bonds, but more importantly influence surface electrostatic potentials of the assembled organic template for nucleation. Biomimetic peptides designed from DPP and self-assembled to form SAMs. Quantitative model for HAp mineralization regulated by non-collagenous protein. Extra DSS repeat reduced the zeta potential on the SAM surface. The nuclei quantity and mineral size on DSS9/DSS9G were always larger. DSS repeats provided surface electrostatic potentials for stronger Ca2+ affinity.
Collapse
|
8
|
Yan W, Lian YJ, Zhang ZY, Zeng MQ, Zhang ZQ, Yin ZZ, Cui LY, Zeng RC. In vitro degradation of pure magnesium-the synergetic influences of glucose and albumin. Bioact Mater 2020; 5:318-333. [PMID: 32181417 PMCID: PMC7063336 DOI: 10.1016/j.bioactmat.2020.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/17/2022] Open
Abstract
The biocorrosion of magnesium in the external physiological environment is still difficult to accurately evaluate the degradation behavior in vivo, particularly, in the microenvironment of the patients with hyperglycemia or diabetes. Thus, we explored the synergistic effects of glucose and protein on the biodegradation of pure magnesium, so as to have a deeper understanding the mechanism of the degradation in vivo. The surface morphology and corrosion product composition of pure magnesium were investigated using SEM, EDS, FTIR, XRD and XPS. The effect of glucose and albumin on the degradation rate of pure magnesium was investigated via electrochemical and immersion tests. The adsorption of glucose and albumin on the sample surface was observed using fluorescence microscopy. The results showed that the presence of 2 g/L glucose changed the micromorphology of corrosion products on the magnesium surface by reacting with metal cations, thus inhibiting the corrosion of pure magnesium. Protein formed a barrier layer to protect the magnesium at early stage of immersion. The chelation reaction between protein and magnesium surface might accelerate the degradation at later stage. There may be a critical glucose (albumin) content. Biodegradation of pure magnesium was inhibited at low concentrations and promoted at high concentrations. The synergistic effect of glucose and protein restrained the adsorption of aggressive chloride ions to a certain extent, and thus inhibited the degradation of pure magnesium considerably. Moreover, XPS results indicated that glucose promoted the adsorption of protein on the sample surface.
Collapse
Affiliation(s)
- Wei Yan
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yi-Jie Lian
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhi-Yuan Zhang
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Mei-Qi Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhao-Qi Zhang
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zheng-Zheng Yin
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Lan-Yue Cui
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
- Corresponding author. Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
9
|
Li CY, Yu C, Zeng RC, Zhang BC, Cui LY, Wan J, Xia Y. In vitro corrosion resistance of a Ta 2O 5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition. Bioact Mater 2020; 5:34-43. [PMID: 31956734 PMCID: PMC6960486 DOI: 10.1016/j.bioactmat.2019.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/20/2022] Open
Abstract
Micro-arc oxidation (MAO) coating with outstanding adhesion strength to Mg alloys has attracted more and more attention. However, owing to the porous structure, aggressive ions easily invaded the MAO/substrate interface through the through pores, limiting long-term corrosion resistance. Therefore, a dense and biocompatible tantalum oxide (Ta2O5) nanofilm was deposited on MAO coated Mg alloy AZ31 through atomic layer deposition (ALD) technique to seal the micropores and regulate the degradation rate. Surface micrography, chemical compositions and crystallographic structure were characterized using FE-SEM, EDS, XPS and XRD. The corrosion resistance of all samples was evaluated through electrochemical and hydrogen evolution tests. Results revealed that the Ta2O5 film mainly existed in the form of amorphousness. Moreover, uniform deposition of Ta2O5 film and effective sealing of micropores and microcracks in MAO coating were achieved. The current density (i corr) of the composite coating decreased three orders of magnitude than that of the substrate and MAO coating, improving corrosion resistance. Besides, the formation and corrosion resistance mechanisms of the composite coating were proposed.
Collapse
Affiliation(s)
- Chang-Yang Li
- Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chi Yu
- Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
| | - Bo-Cheng Zhang
- Jiaxing Microelectronics Engineering Center, Chinese Academy of Sciences, Jiaxing, 314022, China
| | - Lan-Yue Cui
- Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jun Wan
- Jiaxing Microelectronics Engineering Center, Chinese Academy of Sciences, Jiaxing, 314022, China
| | - Yang Xia
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|