1
|
Radwan IT, El-Sherbiny IM, Metwally NH. Synergistic and potential antifungal properties of tailored, one pot multicomponent monoterpenes co-delivered with fluconazole encapsulated nanostructure lipid carrier. Sci Rep 2024; 14:14382. [PMID: 38909063 PMCID: PMC11193721 DOI: 10.1038/s41598-024-63149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Frequent and variant infections are caused by the virtue of opportunistic fungi pathogens. Candidiasis, aspergillosis, and mucormycosis are pathogenic microorganisms that give rise to vast fungal diseases that alternate between moderate to fatal in severity. The use of fluconazole as an antifungal drug was limited due to the acquired resistance in some types of Candida and other fungal species. This study aims to consolidate fluconazole's biological effectiveness against several pathogenic fungi. Six active monoterpenes (MTs) of carvacrol, linalool, geraniol, α-terpinene, citronellal, and nerolidol were selected and encapsulated in nanostructure lipid carrier (NLC) with (NLC-Flu-MTs) and/without (NLC-MTs) fluconazole in one nanoformulation to determine if they will act synergistically or not? The synthesized nanoformulation NLC-Flu-MTs and NLC-MTs exhibited very good particle size of 144.5 nm and 138.6 nm for size and zeta potential values of (- 23.5 mV) and (- 20.3 mV), respectively. Transmission electron microscope investigation confirmed that the synthesized NLCs have regular and spherical shape. The abundance and concentration of the six released monoterpenes were determined, as a novel approach, using GC-MS with very good results and validity. In-vitro antifungal screening was done before and after nano co-delivery against seven pathogenic, and aggressive fungi of Candida tropicalis, Candida krusei, Candida glabrata, Geotrichum Candidum, Candidaalbicans, Aspergillus Niger, and mucor circinelloides. Inhibition Zone diameter (IZD) and the minimum inhibitory concentration (MIC) were measured. Nanoformulations NLC-Flu-MTs and NLC-MTs manifested potential and unique biological susceptibility against all the tested microorganisms with reduced (MIC) values, especially against Candida Tropicalis (MIC = 0.97 µg/ml) which represents 16-fold of the value shown by NLC-MTs (MIC = 15.6 µg/ml) and 64-fold of fluconazole free before nanoformulation (MIC = 62.5 µg/ml). The efficiency of nanomaterials, particularly NLC-Flu-MTs, has become evident in the diminishing value of MIC which affirmed the synergism between fluconazole and the other six monoterpenes.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | | |
Collapse
|
2
|
Khaleil SR, Mira NM, Ghanem NF, M El-Mehasseb I, Helal IB, El-Shafai NM. Dual mechanism (sunlight/dark) of the self-assembly nitazoxanide drug on cellulose nanocrystal surface for destroying the Cryptosporidium parvum oocysts. Int J Biol Macromol 2023; 247:125823. [PMID: 37453638 DOI: 10.1016/j.ijbiomac.2023.125823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Destruction of the cryptosporidium parvum (C. parvum) Oocysts is the main target of the work via the improvement effect of the nitazoxanide (NTZ) drug by increasing the drug adsorption process without changing the cell viability. The synthesis of a self-assembly nanocomposite (NCP) of cellulose nanocrystals (CNC) and NTZ drug was performed successfully via the chemical precipitation methods without utilizing the temperature. Also, the characterization of the fabricated NCP was achieved by different techniques to confirm the natural formation of the NCP. The efficient loading of the NTZ drug on the CMC surface and the release process of NCP was calculated by a UV-Visible spectroscopy device, and the loading efficiency is 37 %. The release efficiency is displayed at 66.3 % after 6 h, and 97 % after 48 h at pH 7.4 with NTZ pure, while the release efficiency of CNC@NTZ at the same pH is 61 % after 6 h, and 86 % after 48 h at pH 7.4. The cytotoxicity of different concentrations of NCP was conducted on normal mouse liver cells (BNL) via the quick screening cytotoxicity method (SRB). The effect of NCP on C. parvum was detected with an in-vivo study in the dark and under sunlight conditions. Compared to the NTZ and CNC, the fabricated NCP was able to destroy 89.3 % of the oocyst wall after 96 h. Moreover, a sporulation inhibition percentage of 53.97 % ± 0.63 % was achieved by a maximum concentration of 7 mg/mL after 9.5 h. The results are very encouraging to use the modified NCP as an alternative NTZ drug, although further research is required in terms of clinical trials.
Collapse
Affiliation(s)
- Shrouk R Khaleil
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nora F Ghanem
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| |
Collapse
|
3
|
Yang Y, Dong H, Yin H, Gu J, Zhang Y, Xu M, Wang X, Zhou Y. Controllable preparation of silver-doped hollow carbon spheres and its application as electrochemical probes for determination of glycated hemoglobin. Bioelectrochemistry 2023; 152:108450. [PMID: 37116231 DOI: 10.1016/j.bioelechem.2023.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Silver-doped hollow carbon spheres (Ag@HCS) were firstly introduced as electrochemical probes for glycated hemoglobin (HbA1c) sensing at a molecularly imprinted polymer (MIP)-based carbon cloth (CC) electrode. Herein, Ag@HCS was prepared using one-pot polymerization of resorcinol and formaldehyde with AgNO3 on the SiO2 template, subsequent carbonization, and template removal. Furthermore, poly-aminophenylboronic acid (PABA) as the MIP film was used as a sensing platform for recognition of HbA1c, which captured the Ag@HCS probe by binding of HbA1c with aptamer modified on the probe surface. Due to regular geometry, large specific surface area, superior electrical conductivity, and highly-dispersed Ag, the prepared Ag@HCS probe provided an amplified electrochemical signal based on the Ag oxidation. By use of the sandwich-type electrochemical sensor, the ultrahigh sensitivity of 4.365 μA (μg mL-1)-1 cm-2 and a wide detection range of 0.8-78.4 μg mL-1 for HbA1c detection with a low detection limit of 0.35 μg mL-1 were obtained. Excellent selectivity was obtained due to the specific binding between HbA1c and PABA-based MIP film. The fabricated electrochemical sensing platform was also implemented successfully for the determination of HbA1c concentrations in the serum of healthy individuals.
Collapse
Affiliation(s)
- Yujie Yang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Hewen Yin
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jie Gu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiaobing Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
4
|
Abasian M, Zhiani R, Motavalizadehkakhky A, Eshghi H, Mehrzad J. Hydrogenation of CO2 to Formate Using Nanopolyoxomolybdate Supported onto Dendritic Fibrous Nanosilica. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
The Role of Multilayer Electrospun Poly(Vinyl Alcohol)/Gelatin nanofibers loaded with Fluconazole and Cinnamaldehyde in the Potential Treatment of Fungal Keratitis. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Ghosh M, Pradhan S, Mandal S, Roy A, Chakrabarty S, Chakrabarti G, Pradhan SK. Enhanced antibacterial activity of a novel protein-arginine deiminase type-4 (PADI4) inhibitor after conjugation with a biocompatible nanocarrier. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Gunduz O, Ulag S. Gentamicin and fluconazole loaded electrospun polymethylmethacrylate (PMMA) fibers as a novel platform for the treatment of corneal keratitis. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2071271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
|
9
|
Pereira D, Carreira TS, Alves N, Sousa Â, Valente JFA. Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. Int J Mol Sci 2022; 23:1165. [PMID: 35163090 PMCID: PMC8835760 DOI: 10.3390/ijms23031165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Tiago Soares Carreira
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Nuno Alves
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Joana F. A. Valente
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| |
Collapse
|
10
|
Synthesis and characterization of a novel nanocarrier for biocompatible targeting of an antibacterial therapeutic agent with enhanced activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Holešová S, Čech Barabaszová K, Hundáková M, Plevová E, Kalendová A. Novel
LDPE
/vermiculite/ciclopiroxolamine hybrid nanocomposites: Structure, surface properties, and antifungal activity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sylva Holešová
- Nanotechnology Centre VŠB – Technical University of Ostrava Ostrava Czech Republic
| | | | - Marianna Hundáková
- Nanotechnology Centre VŠB – Technical University of Ostrava Ostrava Czech Republic
| | - Eva Plevová
- Institute of Geonics Academy of Sciences of Czech Republic (AS CR) Ostrava Czech Republic
| | - Alena Kalendová
- Department of Polymer Engineering, Faculty of Technology Tomas Bata University in Zlín Zlín Czech Republic
| |
Collapse
|
12
|
Ghosh M, Mandal S, Roy A, Paladhi A, Mondal P, Hira SK, Mukhopadhyay SK, Pradhan SK. Synthesis and characterization of a novel drug conjugated copper-silver- titanium oxide nanocomposite with enhanced antibacterial activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Ghosh M, Mandal S, Dutta S, Paladhi A, Ray S, Hira SK, Pradhan SK. Synthesis of drug conjugated magnetic nanocomposite with enhanced hypoglycemic effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111697. [PMID: 33545856 DOI: 10.1016/j.msec.2020.111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
In the present study, a magnetic nanocomposite (magnetite Fe3O4 and hematite Fe2O3) has been successfully synthesized by the sol-gel method and coated with polyvinyl alcohol (PVA) followed by conjugation of anti-diabetic drug metformin. Detailed structural and microstructural characterization of the nanocomposite (NP) and drug conjugated nanocomposite (NP-DC) are analyzed by the Rietveld refinement of respective XRD patterns, FTIR analysis, UV-Vis spectroscopy, SEM and TEM results. SEM and TEM image analyses reveal the spherical morphology and average size of NP, PVA coated nanoparticles (NP-PVA) and NP-DC samples, indicating a suitable size to be a nanocarrier. The biocompatibility of NP and NP-DC was carried out in NIH/3T3 and J774A. 1 cells. The enhanced activity of the drug, when conjugated with nanocomposite, is confirmed after the treatment of both the pure drug and NP-DC sample on the 18 h fasted normoglycemic and hyperglycemic mice. The blood glucose level of the mice is effectively decreased with the same concentration of the pure drug and NP-DC sample. It proves the increased activity of the NP-DC sample, as only 5 wt% drug is present that shows the same efficiency as the pure drug. This study suggests excellent biocompatibility and cytocompatibility of NP and NP-DC besides the critical property as a hypoglycemic agent. It is the first time approach of conjugating metformin with a magnetic nanocomposite for a significant increment of its hypoglycemic activity, which is very important to reduce the side effect of metformin for its prolonged use.
Collapse
Affiliation(s)
- Moupiya Ghosh
- Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Samir Mandal
- Department of Chemistry, Kazi Nazrul University, Kalla, Asansol 713340, India
| | - Sumana Dutta
- Department of Zoology, Durgapur Govt. College, Durgapur, Paschim Burdwan 713104, India
| | - Ankush Paladhi
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Sanjib Ray
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - S K Pradhan
- Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, India.
| |
Collapse
|
14
|
Batool M, Khurshid S, Qureshi Z, Hassan A, Siddique MBA, Naveed S, Siddique SA. Study of biogenically fabricated transition metal oxides nanoparticles on oral cavity infectious microbial strains. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1811729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Madiha Batool
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Shazia Khurshid
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zahid Qureshi
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Ali Hassan
- Department of Chemistry, Government College University, Lahore, Pakistan
| | | | - Sabiha Naveed
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
15
|
Meira FHA, Resende SF, Monteiro DS, Pereira MC, Mattoso LHC, Faria RC, Afonso AS. A Non‐enzymatic Ag/δ‐FeOOH Sensor for Hydrogen Peroxide Determination using Disposable Carbon‐based Electrochemical Cells. ELECTROANAL 2020. [DOI: 10.1002/elan.202060171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Flávio H. A. Meira
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| | - Sayton F. Resende
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| | - Douglas S. Monteiro
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| | - Márcio C. Pereira
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| | - Luiz H. C. Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentação, São Carlos 13560-970 São Paulo Brazil
| | - Ronaldo C. Faria
- Chemistry Department Federal University of São Carlos, CP 676, São Carlos 13565-905 São Paulo Brazil
| | - André S. Afonso
- Institute of Science, Engineering, and Technology Federal University of Jequitinhonha and Mucuri Valleys,Teófilo Otoni 39803-371 Minas Gerais Brazil
| |
Collapse
|
16
|
Enhanced photocatalytic and antibacterial activities of mechanosynthesized TiO2–Ag nanocomposite in wastewater treatment. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Noman MT, Petru M, Militký J, Azeem M, Ashraf MA. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E14. [PMID: 31861406 PMCID: PMC6981647 DOI: 10.3390/ma13010014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
This present study proposed a successful one pot synthesis of zinc oxide nanoparticles (ZnO NPs) and their optimisation for photocatalytic applications. Zinc chloride (ZnCl2) and sodium hydroxide (NaOH) were selected as chemical reagents for the proposed study. The design of this experiment was based on the reagents' amounts and the ultrasonic irradiations' time. The results regarding scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of ZnO NPs with pure hexagonal wurtzite crystalline structure in all synthesised samples. Photocatalytic activity of the developed samples was evaluated against methylene blue dye solution. The rapid removal of methylene blue dye indicated the higher photocatalytic activity of the developed samples than untreated samples. Moreover, central composite design was utilised for statistical analysis regarding the obtained results. A mathematical model for the optimisation of input conditions was designed to predict the results at any given point. The role of crystallisation on the photocatalytic performance of developed samples was discussed in detail in this novel study.
Collapse
Affiliation(s)
- Muhammad Tayyab Noman
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic;
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic; (J.M.); (M.A.)
| | - Michal Petru
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic;
| | - Jiří Militký
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic; (J.M.); (M.A.)
| | - Musaddaq Azeem
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, Technical University of Liberec, 461 17 Liberec, Czech Republic; (J.M.); (M.A.)
| | - Muhammad Azeem Ashraf
- Department of Fibre and Textile Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|