1
|
Abiodun Daramola O, Bazibuhe Safari J, Omotayo Adeniyi K, Siwe-Noundou X, Margaret Kirkpatrick Dingle L, Lesley Edkins A, Foster Tseki P, Werner Maçedo Krause R. Biocompatible liposome and chitosan-coated CdTe/CdSe/ZnSe multi-core-multi-shell fluorescent nanoprobe for biomedical applications. J Photochem Photobiol A Chem 2024; 454:115714. [DOI: 10.1016/j.jphotochem.2024.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
2
|
Ponomaryova TS, Olomskaya VV, Abalymov AA, Anisimov RA, Drozd DD, Drozd AV, Novikova AS, Lomova MV, Zakharevich AM, Goryacheva IY, Goryacheva OA. Visualization of 2D and 3D Tissue Models via Size-Selected Aqueous AgInS/ZnS Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39058959 DOI: 10.1021/acsami.4c05681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Three-dimensional (3D) spheroid cell cultures of fibroblast (L929) and tumor mammary mouse (4T1) were chosen as in vitro tissue models for tissue imaging of ternary AgInS/ZnS fraction quantum dots (QDs). We showed that the tissue-mimetic morphology of cell spheroids through well-developed cell-cell and cell-matrix interactions and distinct diffusion/transport characteristics makes it possible to predict the effect of ternary AgInS/ZnS fraction QDs on the vital activity of cells while simultaneously comparing with classical two-dimensional (2D) cell cultures. The AgInS/ZnS fractions, emitting in a wide spectral range from 635 to 535 nm with a mean size from ∼3.1 ± 0.8 to ∼1.8 ± 0.4 nm and a long photoluminescence lifetime, were separated from the initial QD ensemble by using antisolvent-induced precipitation. For ternary AgInS/ZnS fraction QDs, the absence of toxicity at different QD concentrations was demonstrated on 2D and 3D cell structures. QDs show a robust correlation between numerous factors: their sizes in biological fluids over time, penetration capabilities into 2D and 3D cell structures, and selectivity with respect to penetration into cancerous and healthy cell spheroids. A reproducible protocol for the preparation of QDs along with their unique biological properties allows us to consider ternary AgInS/ZnS fraction QDs as attractive fluorescent contrast agents for tissue imaging.
Collapse
|
3
|
Branzi L, Liang J, Dee G, Kavanagh A, Gun’ko YK. Multishell Silver Indium Selenide-Based Quantum Dots and Their Poly(methyl methacrylate) Composites for Application in Red-Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37017-37027. [PMID: 38968699 PMCID: PMC11261562 DOI: 10.1021/acsami.4c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
In this work, the production of novel multishell silver indium selenide quantum dots (QDs) shelled with zinc selenide and zinc sulfide through a multistep synthesis precisely designed to develop high-quality red-emitting QDs is explored. The formation of the multishell nanoheterostructure significantly improves the photoluminescence quantum yield of the nanocrystals from 3% observed for the silver indium selenide core to 27 and 46% after the deposition of the zinc selenide and zinc sulfide layers, respectively. Moreover, the incorporation of the multishelled QDs in a poly(methyl methacrylate) (PMMA) matrix via in situ radical polymerization is investigated, and the role of thiol ligand passivation is proven to be fundamental for the stabilization of the QDs during the polymerization step, preventing their decomposition and the relative luminescence quenching. In particular, the role of interface chemistry is investigated by considering both surface passivation by inorganic zinc chalcogenide layers, which allows us to improve the optical properties, and organic thiol ligand passivation, which is fundamental to ensuring the chemical stability of the nanocrystals during in situ radical polymerization. In this way, it is possible to produce silver-indium selenide QD-PMMA composites that exhibit bright red luminescence and high transparency, making them promising for potential applications in photonics. Finally, it is demonstrated that the new silver indium selenide QD-PMMA composites can serve as an efficient color conversion layer for the production of red light-emitting diodes.
Collapse
Affiliation(s)
- Lorenzo Branzi
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Jinming Liang
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Garret Dee
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Aoife Kavanagh
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Yurii K. Gun’ko
- School of
Chemistry, CRANN and AMBER
Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
4
|
Jeevanandam J, Gonçalves M, Castro R, Gallo J, Bañobre-López M, Rodrigues J. Enhanced alpha-amylase inhibition activity of amine-terminated PAMAM dendrimer stabilized pure copper-doped magnesium oxide nanoparticles. BIOMATERIALS ADVANCES 2023; 153:213535. [PMID: 37385162 DOI: 10.1016/j.bioadv.2023.213535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
The present work aims to prepare copper-doped MgO nanoparticles via a sol-gel approach and study their antidiabetic alpha-amylase inhibition activity with undoped MgO nanoparticles. The ability of G5 amine-terminated polyamidoamine (PAMAM) dendrimer for the controlled release of copper-doped MgO nanoparticles to exhibit alpha-amylase inhibition activity was also evaluated. The synthesis of MgO nanoparticles via sol-gel approach and optimization of calcination temperature and time has led to the formation of nanoparticles with different shapes (spherical, hexagonal, and rod-shaped) and a polydispersity in size ranging from 10 to 100 nm with periclase crystalline phase. The presence of copper ions in the MgO nanoparticles has altered their crystallite size, eventually modifying their size, morphology, and surface charge. The efficiency of dendrimer to stabilize spherical copper-doped MgO nanoparticles (ca. 30 %) is higher than in other samples, which was confirmed by UV-Visible, DLS, FTIR, and TEM analysis. The amylase inhibition assay emphasized that the dendrimer nanoparticles stabilization has led to the prolonged enzyme inhibition ability of MgO and copper-doped MgO nanoparticles for up to 24 h.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mara Gonçalves
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rita Castro
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Juan Gallo
- Advanced (magnetic) theranostic nanostructures lab (AmTheNa), Nanomedicine group, International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) theranostic nanostructures lab (AmTheNa), Nanomedicine group, International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
5
|
Chen T, Chen Y, Li Y, Liang M, Wu W, Wang Y. A Review on Multiple I-III-VI Quantum Dots: Preparation and Enhanced Luminescence Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5039. [PMID: 37512312 PMCID: PMC10384050 DOI: 10.3390/ma16145039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
I-III-VI type QDs have unique optoelectronic properties such as low toxicity, tunable bandgaps, large Stokes shifts and a long photoluminescence lifetime, and their emission range can be continuously tuned in the visible to near-infrared light region by changing their chemical composition. Moreover, they can avoid the use of heavy metal elements such as Cd, Hg and Pb and highly toxic anions, i.e., Se, Te, P and As. These advantages make them promising candidates to replace traditional binary QDs in applications such as light-emitting diodes, solar cells, photodetectors, bioimaging fields, etc. Compared with binary QDs, multiple QDs contain many different types of metal ions. Therefore, the problem of different reaction rates between the metal ions arises, causing more defects inside the crystal and poor fluorescence properties of QDs, which can be effectively improved by doping metal ions (Zn2+, Mn2+ and Cu+) or surface coating. In this review, the luminous mechanism of I-III-VI type QDs based on their structure and composition is introduced. Meanwhile, we focus on the various synthesis methods and improvement strategies like metal ion doping and surface coating from recent years. The primary applications in the field of optoelectronics are also summarized. Finally, a perspective on the challenges and future perspectives of I-III-VI type QDs is proposed as well.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuanhong Chen
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Youpeng Li
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mengbiao Liang
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenkui Wu
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| |
Collapse
|
6
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
7
|
Sravani AB, Ghate V, Lewis S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. Biol Trace Elem Res 2023; 201:1026-1050. [PMID: 35467267 PMCID: PMC9898429 DOI: 10.1007/s12011-022-03226-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is an aggressive type of cancer affecting women worldwide. Many affected individuals rely on smear tests for the diagnosis, surgery, chemotherapy, or radiation for their treatment. However, due to a broad set of undesired results and side-effects associated with the existing protocols, the search for better diagnostic and therapeutic interventions is a never-ending pursuit. In the purview, the bio-concentration of trace elements (copper, selenium, zinc, iron, arsenic, manganese, and cadmium) is seen to fluctuate during the occurrence of cervical cancer and its progression from pre-cancerous to metastatic nature. Thus, during the occurrence of cervical cancer, the detection of trace elements and their supplementation will prove to be highly advantageous in developing diagnostic tools and therapeutics, respectively. This review provides a detailed overview of cervical cancer, its encouragement by human papillomavirus infections, the mechanism of pathology, and resistance. Majorly, the review emphasizes the less explored role of trace elements, their contribution to the growth and inhibition of cervical cancer. Numerous clinical trials have been listed, thereby providing a comprehensive reference to the exploration of trace elements in the management of cervical cancer.
Collapse
Affiliation(s)
- Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Wang X, He K, Hu Y, Tang M. A review of pulmonary toxicity of different types of quantum dots in environmental and biological systems. Chem Biol Interact 2022; 368:110247. [DOI: 10.1016/j.cbi.2022.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
9
|
Mantashian GA, Hayrapetyan DB. Impurity effects on binding energy, diamagnetic susceptibility and photoionization cross-section of chalcopyrite AgInSe 2nanotadpole. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:245302. [PMID: 35320781 DOI: 10.1088/1361-648x/ac606b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Recently the interest in chalcopyrite semiconductor nanostructures has increased because of their non-toxicity and their wide direct bandgap. Likewise, structures with non-trivial geometry are particularly interesting because of their electronic, optical, and magnetic properties. In the current article, the finite element method was used in conjunction with the effective mass approximation to theoretically investigate the properties of a chalcopyrite AgInSe2nanotadpole in the presence of an hydrogen like shallow off-center impurity. The morphology of the nanotadpole gives it excellent hydrodynamic properties and is ideal for a wide range of applications. The probability densities for various impurity positions and energy levels were obtained. The results suggested a strong dependence of the behavior of the electron on the impurity positions and the orientation of the wave function. The investigation of the nanotadpole's energy spectra and their comparison with the cylindrical and spherical quantum dots suggest that the spectrum has degenerate states similar to the spherical case, however at some ranges, the levels behave similarly to the cylindrical case. The binding energy's dependence on the nanotadpole's size and the impurity position was obtained. The dependence of the diamagnetic susceptibility on the impurity position was calculated. An extensive investigation of the photoionization cross-section was carried out for the ground and the first two excited states as the initial states and the first twenty excited states as the final states.
Collapse
Affiliation(s)
- Grigor A Mantashian
- Department of General Physics and Quantum Nanostructures, Russian-Armenian University, Yerevan, Armenia
| | - David B Hayrapetyan
- Department of General Physics and Quantum Nanostructures, Russian-Armenian University, Yerevan, Armenia
| |
Collapse
|
10
|
Ncapayi V, Ninan N, Lebepe TC, Parani S, Girija AR, Bright R, Vasilev K, Maluleke R, Tsolekile N, Kodama T, Oluwafemi OS. Diagnosis of Prostate Cancer and Prostatitis Using near Infra-Red Fluorescent AgInSe/ZnS Quantum Dots. Int J Mol Sci 2021; 22:12514. [PMID: 34830396 PMCID: PMC8619584 DOI: 10.3390/ijms222212514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/14/2023] Open
Abstract
The link between the microbiome and cancer has led researchers to search for a potential probe for intracellular targeting of bacteria and cancer. Herein, we developed near infrared-emitting ternary AgInSe/ZnS quantum dots (QDs) for dual bacterial and cancer imaging. Briefly, water-soluble AgInSe/ZnS QDs were synthesized in a commercial kitchen pressure cooker. The as-synthesized QDs exhibited a spherical shape with a particle diameter of 4.5 ± 0.5 nm, and they were brightly fluorescent with a photoluminescence maximum at 705 nm. The QDs showed low toxicity against mouse mammary carcinoma (FM3A-Luc), mouse colon carcinoma (C26), malignant fibrous histiocytoma-like (KM-Luc/GFP) and prostate cancer cells, a greater number of accumulations in Staphylococcus aureus, and good cellular uptake in prostate cancer cells. This work is an excellent step towards using ternary QDs for diagnostic and guided therapy for prostate cancer.
Collapse
Affiliation(s)
- Vuyelwa Ncapayi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (V.N.); (T.C.L.); (S.P.); (R.M.); (N.T.)
- Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Neethu Ninan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (N.N.); (R.B.); (K.V.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Thabang C. Lebepe
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (V.N.); (T.C.L.); (S.P.); (R.M.); (N.T.)
- Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (V.N.); (T.C.L.); (S.P.); (R.M.); (N.T.)
- Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | | | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (N.N.); (R.B.); (K.V.)
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (N.N.); (R.B.); (K.V.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Rodney Maluleke
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (V.N.); (T.C.L.); (S.P.); (R.M.); (N.T.)
- Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Ncediwe Tsolekile
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (V.N.); (T.C.L.); (S.P.); (R.M.); (N.T.)
- Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Tetsuya Kodama
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Oluwatobi S. Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (V.N.); (T.C.L.); (S.P.); (R.M.); (N.T.)
- Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
11
|
Synthesis of NIR-II Absorbing Gelatin Stabilized Gold Nanorods and Its Photothermal Therapy Application against Fibroblast Histiocytoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14111137. [PMID: 34832919 PMCID: PMC8625232 DOI: 10.3390/ph14111137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The excellent photothermal properties of gold nanorods (Au-NRs) make them one of the most researched plasmonic photothermal nanomaterials. However, their biological applications have been hampered greatly due to surfactant-induced cytotoxicity. We herein report a simple synthesis of highly biocompatible gelatin stabilized Au-NRs (gelatin@Au-NRs) to address this issue. The optical and structural properties of the as-synthesized gelatin@Au-NRs were investigated by Zetasizer, Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared spectroscopy (FTIR). The as-synthesized gelatin@Au-NRs were highly crystalline and rod-like in shape with an average length and diameter of 66.2 ± 2.3 nm and 10 ± 1.6 nm, respectively. The as-synthesized gelatin@Au-NRs showed high stability in common biological media (phosphate buffer saline and Dulbecco’s Modified Eagle’s Medium) compared to CTAB capped Au-NRs. Similarly, the gelatin@Au-NRs showed an improved heat production and outstanding cell viability against two different cancer cell lines; KM-Luc/GFP (mouse fibroblast histiocytoma cell line) and FM3A-Luc (breast carcinoma cell line) compared to CTAB capped Au-NRs and PEG@Au-NRs. An in vitro photothermal therapy study against KM-Luc/GFP showed that gelatin@Au-NRs effectively destroys the cancer cells.
Collapse
|
12
|
Yao J, Lifante J, Rodríguez-Sevilla P, de la Fuente-Fernández M, Sanz-Rodríguez F, Ortgies DH, Calderon OG, Melle S, Ximendes E, Jaque D, Marin R. In Vivo Near-Infrared Imaging Using Ternary Selenide Semiconductor Nanoparticles with an Uncommon Crystal Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103505. [PMID: 34554636 DOI: 10.1002/smll.202103505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The implementation of in vivo fluorescence imaging as a reliable diagnostic imaging modality at the clinical level is still far from reality. Plenty of work remains ahead to provide medical practitioners with solid proof of the potential advantages of this imaging technique. To do so, one of the key objectives is to better the optical performance of dedicated contrast agents, thus improving the resolution and penetration depth achievable. This direction is followed here and the use of a novel AgInSe2 nanoparticle-based contrast agent (nanocapsule) is reported for fluorescence imaging. The use of an Ag2 Se seeds-mediated synthesis method allows stabilizing an uncommon orthorhombic crystal structure, which endows the material with emission in the second biological window (1000-1400 nm), where deeper penetration in tissues is achieved. The nanocapsules, obtained via phospholipid-assisted encapsulation of the AgInSe2 nanoparticles, comply with the mandatory requisites for an imaging contrast agent-colloidal stability and negligible toxicity-and show superior brightness compared with widely used Ag2 S nanoparticles. Imaging experiments point to the great potential of the novel AgInSe2 -based nanocapsules for high-resolution, whole-body in vivo imaging. Their extended permanence time within blood vessels make them especially suitable for prolonged imaging of the cardiovascular system.
Collapse
Affiliation(s)
- Jingke Yao
- Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - José Lifante
- Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillio 2, Madrid, 28029, Spain
| | - Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - María de la Fuente-Fernández
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillio 2, Madrid, 28029, Spain
| | - Francisco Sanz-Rodríguez
- Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Departmento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid, 28049, Spain
| | - Dirk H Ortgies
- Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain
| | | | - Sonia Melle
- Department of Optics, Complutense University of Madrid, Madrid, 28037, Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| |
Collapse
|
13
|
Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms. Molecules 2021; 26:molecules26092764. [PMID: 34066652 PMCID: PMC8125818 DOI: 10.3390/molecules26092764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ternary quantum dots (QDs) are novel nanomaterials that can be used in chemical analysis due their unique physicochemical and spectroscopic properties. These properties are size-dependent and can be adjusted in the synthetic protocol modifying the reaction medium, time, source of heat, and the ligand used for stabilization. In the last decade, several spectroscopic methods have been developed for the analysis of organic and inorganic analytes in biological, drug, environmental, and food samples, in which different sensing schemes have been applied using ternary quantum dots. This review addresses the different synthetic approaches of ternary quantum dots, the sensing mechanisms involved in the analyte detection, and the predominant areas in which these nanomaterials are used.
Collapse
|
14
|
Wang Z, Tang M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. ENVIRONMENTAL RESEARCH 2021; 194:110593. [PMID: 33352186 DOI: 10.1016/j.envres.2020.110593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 05/23/2023]
Abstract
Quantum dots are widely applicated into bioindustry and research owing to its superior properties such as broad excitation spectra, narrow bandwidth emission spectra and high resistance to photo-bleaching. However, the toxicity of quantum dots should not be underestimated and aroused widespread concern. The surface properties and size of quantum dots are critical relevant properties on toxicity. Then, the core/shell structure becomes one common way to affect the activity of quantum dots such as enhance biocompatibility and stability. Except those toxicity it induced, the problem it brought into the environment such as the degradation of quantum dot similarly becomes a hot issue. This review initially took a brief scan of current research on the cytotoxicity of QDs and the mechanism behind that over the past five years. Mainly discussion concentrated on the diversity of structure on quantum dots whether played a key role on the cytotoxicty of quantum dots. It also discussed the role of different shells with metal or nonmetal cores and the influence on the environment.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Hashemkhani M, Muti A, Sennaroğlu A, Yagci Acar H. Multimodal image-guided folic acid targeted Ag-based quantum dots for the combination of selective methotrexate delivery and photothermal therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112082. [PMID: 33221627 DOI: 10.1016/j.jphotobiol.2020.112082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/13/2020] [Accepted: 11/08/2020] [Indexed: 01/06/2023]
Abstract
Multifunctional quantum dots (QDs) with photothermal therapy (PTT) potential loaded with an anticancer drug and labelled with a targeting agent can be highly effective nano-agents for tumour specific, image-guided PTT/chemo combination therapy of cancer. Ag-chalcogenides are promising QDs with good biocompatibility. Ag2S QDs are popular theranostic agents for imaging in near-infrared with PTT potential. However, theranostic applications of AgInS2 QDs emitting in the visible region and its PTT potential need to be explored. Here, we first present a simple synthesis of small, glutathione (GSH) coated AgInS2 QDs with peak emission at 634 nm, 21% quantum yield, and excellent long-term stability without an inorganic shell. Ag2S-GSH QDs emitting in the near-infrared region (peak emission = 822 nm) were also produced. Both QDs were tagged with folic acid (FA) and conjugated with methotrexate (MTX). About 3-fold higher internalization of FA-tagged QDs by folate-receptor (FR) overexpressing HeLa cells than HT29 and A549 cells was observed. Delivery of MTX by QD-FA-MTX reduced the IC50 of the drug from 10 μg/mL to 2.5-5 μg/mL. MTX release was triggered at acidic pH, which was further enhanced with local temperature increase created by laser irradiation. Irradiation of AgInS2-GSH QDs at 640 nm (300 mW) for 10 min, caused about 10 °C temperature increase but did not cause any thermal ablation of cells. On the other hand, Ag2S-GSH-FA based PTT effectively and selectively killed HeLa cells with 10 min 808 nm laser irradiation via mostly necrosis with an IC50 of 5 μg Ag/mL. Under the same conditions, IC50 of MTX was reduced to 0.21 μg/mL if Ag2S-GSH-FA.
Collapse
Affiliation(s)
- Mahshid Hashemkhani
- Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Abdullah Muti
- Laser Research Laboratory, Departments of Physics and Electrical-Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Alphan Sennaroğlu
- Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey; Laser Research Laboratory, Departments of Physics and Electrical-Electronics Engineering, Koç University, Istanbul 34450, Turkey; Koç University Surface Science and Technology Center (KUYTAM)Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Havva Yagci Acar
- Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey; Koç University, Department of Chemistry, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.
| |
Collapse
|
16
|
Mi G, Shi H, Yang M, Wang C, Hao H, Fan J. Efficient detection doxorubicin hydrochloride using CuInSe 2@ZnS quantum dots and Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118673. [PMID: 32679484 DOI: 10.1016/j.saa.2020.118673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Doxorubicin hydrochloride (DOX) is an effective anthracycline anticancer drug. However, the exceeded taken up could induce several side-effects such as cardiotoxicity, alopecia. Therefore, the level of DOX needs to be closely monitored to avoid the occurrence of its side-effects. Herein, we report a novel core CuInSe2 - shell ZnS quantum dots (CuInSe2@ZnS, QDs) and Ag nanoparticles (NPs) fluorescence sensor based on the surface plasmon resonance effect (SPR) of Ag NPs. The CuInSe2@ZnS QDs were prepared by water phase reflux method with the 3-mercaptopropionic acid (MPA) as stabilizer and ligand. The fluorescence intensity of CuInSe2@ZnS QDs/Ag NPs significantly reduced by DOX, which is mainly based on the electrostatic interaction between the DOX and fluorescence sensors. The inhibition of photoluminescence (ln F0/F) was linearly relationship to the concentration of DOX in the range of 2-100 μM with the detection limit as low as 0.05 μM. The as-prepared sensor has a high selectivity and sensitivity to DOX. Furthermore, the new sensor has been successfully applied to the determination of DOX in human serum samples with satisfactory results. Our work provides a clue for developing a novel CuInSe2@ZnS QDs/Ag NPs based fluorescence sensor for DOX detection.
Collapse
Affiliation(s)
- Guohua Mi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Huanxian Shi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Min Yang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Cunjin Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Jun Fan
- College of Food Science and Engineering, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
17
|
Parani S, Oluwafemi OS. Selective and sensitive fluorescent nanoprobe based on AgInS 2-ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. NANOTECHNOLOGY 2020; 31:395501. [PMID: 32531766 DOI: 10.1088/1361-6528/ab9c58] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We herein report a novel eco-friendly method for the fluorescent sensing of Cr (III) ions using green synthesized glutathione (GSH) capped water soluble AgInS2-ZnS (AIS-ZnS) quantum dots (QDs). The as-synthesized AIS-ZnS QDs were speherical in shape with average diameter of ∼2.9 nm and exhibited bright yellow emission. The fluorimetric analyses showed that, compared to Cr (VI) ions and other 20 metal ions across the periodic table, AIS-ZnS QDs selectively detected Cr (III) ions via fluorescent quenching. In addition, AIS-ZnS QDs fluorescent nanoprobes exhibited selective detection of Cr (III) ions in the mixture of interfering divalent metal ions such as Cu (II), Pb (II), Hg (II), Ni (II). The mechanism of Cr (III) sensing investigated using HRTEM and FTIR revealed that the binding of Cr (III) ions with the GSH capping group resulted in the aggregation of QDs followed by fluorescence quenching. The limit of detection of Cr (III) ions was calculated to be 0.51 nM. The present method uses cadmium free QDs and paves a greener way for selective determination of Cr (III) ions in the midst of other ions in aqueous solutions.
Collapse
Affiliation(s)
- Sundararajan Parani
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, Johannesburg, South Africa. Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, Johannesburg, South Africa
| | | |
Collapse
|
18
|
Jose Varghese R, Parani S, Remya VR, Maluleke R, Thomas S, Oluwafemi OS. Sodium alginate passivated CuInS 2/ZnS QDs encapsulated in the mesoporous channels of amine modified SBA 15 with excellent photostability and biocompatibility. Int J Biol Macromol 2020; 161:1470-1476. [PMID: 32745549 DOI: 10.1016/j.ijbiomac.2020.07.240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023]
Abstract
We herein report the synthesis of CuInS2/ZnS (CIS/ZnS) quantum dots (QDs) via a greener method followed by sodium alginate (SA) passivation and encapsulation into mesoporous channels of amine modified silica (SBA15-NH2) for improved photostability and biocompatibility. The as-synthesized CIS/ZnS QDs exhibited near infrared emission even after SA passivation and silica encapsulation. Transmission electron microscopy (TEM) and Small angle X-ray diffraction (XRD) revealed the mesoporous nature of the SBA-15 remained stable after loading with the SA-CIS/ZnS QDs. The effective encapsulation of SA-CIS/ZnS QDs inside the pores of SBA15-NH2 matrix was confirmed by Brunauer-Emmett-Teller (BET) pore volume analysis while the interaction between the QDs and SBA15-NH2 was confirmed using Fourier transform infrared (FTIR) spectroscopy. The photostability of the QDs was greatly enhanced after these modifications. The resultant SA-CIS/ZnS-SBA15-NH2 (QDs-silica) composite possessed remarkable biocompatibility towards lung cancer (A549) and kidney (HEK 293) cell lines making it a versatile material for theranostic applications.
Collapse
Affiliation(s)
- R Jose Varghese
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - V R Remya
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Rodney Maluleke
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Sabu Thomas
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India
| | - Oluwatobi S Oluwafemi
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa.
| |
Collapse
|
19
|
Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110807. [PMID: 32279757 DOI: 10.1016/j.msec.2020.110807] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Tremendous demands for simultaneous imaging of biological entities, along with the drawback of photobleaching in fluorescent dyes, have encouraged scientists to apply novel and non-toxic colloidal quantum dots (QDs) in biomedical researches. Herein, a novel aqueous-phase approach for the preparation of multicomponent In-based QDs is reported. Absorption and photoluminescence emission spectra of the as-prepared QDs were tuned by alteration of QDs' composition as Zn-Ag-In-S/ZnS, Ag-In-S/ZnS and Cu-Ag-In-S/ZnS core/shell QDs. In order to reach reproducibly intense and tunable light-emissive colloidal QDs with green, amber, and red color, various optimization steps were carefully performed. The structural characterizations such as EDX, ICP-AES, XRD, TEM and FT-IR measurements were also carried out to demonstrate the success of the present method to prepare extremely quantum-confined QDs capped with functional groups. Then, to ensure their promising biomedical applications, the generated intracellular reactive oxygen species (ROS) by QDs were quantitatively and qualitatively measured in dark conditions and under 405 nm laser irradiation. Our results verified an enhancement in the generation of reactive oxygen species (ROS) and cytotoxic effects in the presence of laser irradiation while their muted toxic effects in dark conditions confirmed biocompatible properties of un-excited In-based QDs. Moreover, bioimaging analysis revealed strong merits of the suggested synthetic route to achieve ideal fluorescent QDs as bright/multi-color optical nano-probes in imaging and transporting pumps in the cell membrane. This further emphasized the potential ability of the present AgInS-based/ZnS QDs in obtaining required results as theranostic agents for simultaneous treatment and imaging of cancer. The harmonized advantages in simplicity and effectiveness of synthesis procedure, excellent structural/optical properties enriched with confirmed biomedical merits in high contrast imaging and potential treatment highlight the present work.
Collapse
|
20
|
Raievska O, Stroyuk O, Dzhagan V, Solonenko D, Zahn DRT. Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties. RSC Adv 2020; 10:42178-42193. [PMID: 35516771 PMCID: PMC9057868 DOI: 10.1039/d0ra07706b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
A direct aqueous synthesis, composition- and size-dependent absorption, photoluminescence, and vibrational properties of ultra-small glutathione-capped Ag-deficient Ag–In–Se quantum dots are reported.
Collapse
Affiliation(s)
- Oleksandra Raievska
- Semiconductor Physics
- Chemnitz University of Technology
- D-09107 Chemnitz
- Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN)
| | - Oleksandr Stroyuk
- L. V. Pysarzhevsky Institute of Physical Chemistry
- Nat. Acad. of Science of Ukraine
- 03028 Kyiv
- Ukraine
- Forschungszentrum Jülich GmbH
| | - Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
- Taras Shevchenko National University
| | - Dmytro Solonenko
- Semiconductor Physics
- Chemnitz University of Technology
- D-09107 Chemnitz
- Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN)
| | - Dietrich R. T. Zahn
- Semiconductor Physics
- Chemnitz University of Technology
- D-09107 Chemnitz
- Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN)
| |
Collapse
|