1
|
Pablos JL, Lozano D, Manzano M, Vallet-Regí M. Regenerative medicine: Hydrogels and mesoporous silica nanoparticles. Mater Today Bio 2024; 29:101342. [PMID: 39649249 PMCID: PMC11625165 DOI: 10.1016/j.mtbio.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024] Open
Abstract
Hydrogels, that are crosslinked polymer networks, can absorb huge quantities of water and/or biological fluids. Their physical properties, such as elasticity and soft tissue, together with their biocompatibility and biodegradability, closely resemble living tissues. The versatility of hydrogels has fuelled their application in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Their combination with nanoparticles, specifically with Mesoporous Silica Nanoparticles (MSNs), have elevated these composites to the next level, since MSNs could improve the hydrogel mechanical properties, their ability to encapsulate and controlled release great amounts of different therapeutic agents, and their responsiveness to a variety of external and internal stimuli. In this review, the main features of both MSNs and hydrogels are introduced, followed by the discussion of different hydrogels-MSNs structures and an overview of their use in different applications, such as drug delivery technologies and tissue engineering.
Collapse
Affiliation(s)
- Jesús L. Pablos
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Daniel Lozano
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| | - Miguel Manzano
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| |
Collapse
|
2
|
Zhao J, Lu F, Dong Z. Strategies for Constructing Tissue-Engineered Fat for Soft Tissue Regeneration. Tissue Eng Regen Med 2024; 21:395-408. [PMID: 38032533 PMCID: PMC10987464 DOI: 10.1007/s13770-023-00607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Repairing soft tissue defects caused by inflammation, tumors, and trauma remains a major challenge for surgeons. Adipose tissue engineering (ATE) provides a promising way to solve this problem. METHODS This review summarizes the current ATE strategies for soft tissue reconstruction, and introduces potential construction methods for ATE. RESULTS Scaffold-based and scaffold-free strategies are the two main approaches in ATE. Although several of these methods have been effective clinically, both scaffold-based and scaffold-free strategies have limitations. The third strategy is a synergistic tissue engineering strategy and combines the advantages of scaffold-based and scaffold-free strategies. CONCLUSION Personalized construction, stable survival of reconstructed tissues and functional recovery of organs are future goals of building tissue-engineered fat for ATE.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Plastic Surgery Institute of Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Ziqing Dong
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Liu Y, Pu X, Duan M, Chen C, Zhao Y, Zhang D, Xie J. Biomimetic Fibers Derived from an Equidistant Micropillar Platform Dictate Osteocyte Fate via Mechanoreception. NANO LETTERS 2023; 23:7950-7960. [PMID: 37418659 DOI: 10.1021/acs.nanolett.3c01739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
It is a big challenge to design a biomimetic physical microenvironment with greater similarity to in vivo tissue to observe real cell behaviors. We established a novel cell culture platform based on patterned equidistant micropillars with stiff and soft stiffnesses to mimic the changes that happened in the transition from normal to osteoporotic disease. We first demonstrated that the soft micropillar substrate decreased osteocyte synaptogenesis through synaptogyrin 1 and that this decrease was accompanied by impairment of cell mechanoperception and a decrease in cellular cytoskeletal rearrangement. We then found that the soft equidistant micropillar substrate reduced the osteocyte synaptogenesis mainly via the inactivation of Erk/MAPK signaling. We finally found that soft micropillar substrate-mediated synaptogenesis impacted the cell-to-cell communication and matrix mineralization of osteocytes. Taken together, this study provides evidence of cellular mechanical responses that are much more similar to those of real osteocytes at the bone tissue level.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, 1919 7th Ave. S, Birmingham, Alabama 35233, United States
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| |
Collapse
|
4
|
Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regen Biomater 2023; 10:rbad083. [PMID: 37808955 PMCID: PMC10551240 DOI: 10.1093/rb/rbad083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.
Collapse
Affiliation(s)
- Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jia Ma
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
5
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
6
|
Farsani AM, Rahimi F, Taebnia N, Salimi M, Arpanaei A. Tailored design and preparation of magnetic nanocomposite particles for the isolation of exosomes. NANOTECHNOLOGY 2023; 34:155603. [PMID: 36638529 DOI: 10.1088/1361-6528/acb2d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Here, we prepared a magnetic nanocomposite system composed of a cluster of magnetite nanoparticles coated with silica shell (MSNPs) with an average diameter of 140 ± 20 nm and conjugated with CD9 antibody (AntiCD9) using different strategies including adsorption or chemical conjugation of antibody molecules to either aminated MSNPs (AMSNPs) or carboxylated MSNPs (CMSNPs). Then, MSNPs were employed to isolate exosomes from ultracentrifuge-enriched solution, PC3 cell-culture medium, or exosome-spiked simulated plasma samples. Quantitative tests using nanoparticle-tracking analysis confirmed antibody-covalently conjugated MSNPs, i.e. the AntiCD9-AMSNPs and AntiCD9-CMSNPs enabled >90% recovery of exosomes. Additionally, the exosomes isolated with AntiCD9-CMSNPs showed higher recovery efficiency compared to the AntiCD9-AMSNPs. For both nanoadsorbents, lower protein impurities amounts were obtained as compared to that of exosomes isolated by ultracentrifugation and Exocib kit. The mean diameter assessment of the isolated exosomes indicates that particles isolated by using AntiCD9-AMSNPs and AntiCD9-CMSNPs have smaller sizes (136 ± 2.64 nm and 113 ± 11.53 nm, respectively) than those obtained by UC-enriched exosomes (140.9 ± 1.6 nm) and Exocib kit (167 ± 10.53 nm). Such promising results obtained in the isolation of exosomes recommend magnetic nanocomposite as an efficient tool for the simple and fast isolation of exosomes for diagnosis applications.
Collapse
Affiliation(s)
- Arezoo Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box: 14965/161, Tehran, Iran
| | - Fatemeh Rahimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box: 14965/161, Tehran, Iran
| | - Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institute, SE171 77 Stockholm, Sweden
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box: 14965/161, Tehran, Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), PO Box: 14965/161, Tehran, Iran
- Scion, Private Bag 3020, Rotorua 3046, New Zealand
| |
Collapse
|
7
|
Wong CW, Han HW, Hsu SH. Changes of cell membrane fluidity for mesenchymal stem cell spheroids on biomaterial surfaces. World J Stem Cells 2022; 14:616-632. [PMID: 36157913 PMCID: PMC9453270 DOI: 10.4252/wjsc.v14.i8.616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The therapeutic potential of mesenchymal stem cells (MSCs) in the form of three-dimensional spheroids has been extensively demonstrated. The underlying mechanisms for the altered cellular behavior of spheroids have also been investigated. Cell membrane fluidity is a critically important physical property for the regulation of cell behavior, but it has not been studied for the spheroid-forming cells to date.
AIM To explore the association between cell membrane fluidity and the morphological changes of MSC spheroids on the surface of biomaterials to elucidate the role of membrane fluidity during the spheroid-forming process of MSCs.
METHODS We generated three-dimensional (3D) MSC spheroids on the surface of various culture substrates including chitosan (CS), CS-hyaluronan (CS-HA), and polyvinyl alcohol (PVA) substrates. The cell membrane fluidity and cell morphological change were examined by a time-lapse recording system as well as a high-resolution 3D cellular image explorer. MSCs and normal/cancer cells were pre-stained with fluorescent dyes and co-cultured on the biomaterials to investigate the exchange of cell membrane during the formation of heterogeneous cellular spheroids.
RESULTS We discovered that vesicle-like bubbles randomly appeared on the outer layer of MSC spheroids cultured on different biomaterial surfaces. The average diameter of the vesicle-like bubbles of MSC spheroids on CS-HA at 37 °C was approximately 10 μm, smaller than that on PVA substrates (approximately 27 μm). Based on time-lapse images, these unique bubbles originated from the dynamic movement of the cell membrane during spheroid formation, which indicated an increment of membrane fluidity for MSCs cultured on these substrates. Moreover, the membrane interaction in two different types of cells with similar membrane fluidity may further induce a higher level of membrane translocation during the formation of heterogeneous spheroids.
CONCLUSION Changes in cell membrane fluidity may be a novel path to elucidate the complicated physiological alterations in 3D spheroid-forming cells.
Collapse
Affiliation(s)
- Chui-Wei Wong
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
| | - Hao-Wei Han
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
| | - Shan-hui Hsu
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
- National Health Research Institutes, Institute of Cellular and System Medicine, Miaoli 350, Taiwan
- National Taiwan University, Research and Development Center for Medical Devices, Taipei 10617, Taiwan
| |
Collapse
|
8
|
van Rijt S, de Groot K, Leeuwenburgh SCG. Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Eng Part A 2022; 28:461-477. [PMID: 35107351 DOI: 10.1089/ten.tea.2021.0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bulk calcium phosphates and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale calcium phosphate and silicate-based particles of increased specific surface area, chemical reactivity and solubility which offer specific advantages as compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of calcium phosphate and silicate-based nanoparticles within the fields of i) local delivery of therapeutic agents, ii) functionalization of biomaterial scaffolds or implant coatings, and iii) bio-imaging applications.
Collapse
Affiliation(s)
- Sabine van Rijt
- Maastricht University, 5211, MERLN Institute-Instructive Biomaterial Engineering, Maastricht, Limburg, Netherlands;
| | - Klaas de Groot
- Vrije Universiteit Amsterdam, 1190, Academic Center for Dentistry Amsterdam (ACTA)-Department of Oral Implantology and Prosthetic Dentistry, Amsterdam, Noord-Holland, Netherlands;
| | - Sander C G Leeuwenburgh
- Radboudumc, 6034, Dept. of Dentistry-Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands;
| |
Collapse
|
9
|
Balavigneswaran CK, Muthuvijayan V. Nanohybrid-Reinforced Gelatin-Ureidopyrimidinone-Based Self-healing Injectable Hydrogels for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2021; 4:5362-5377. [PMID: 35007016 DOI: 10.1021/acsabm.1c00458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The traditional hydrogels are prone to break due to the applied stress. The deformation of the implanted hydrogels would result in the loss of structural integrity, leading to the failure of hydrogel functionalities and tissue regeneration. Self-healing hydrogels (AG-UPy), composed of oxidized alginate and ureidopyrimidinone-functionalized gelatin (G-UPy), were developed to address this challenge. These self-healing hydrogels possess two independent healing mechanisms, viz., Schiff base formation and UPy dimerization. These hydrogels were compared with oxidized alginate-gelatin (AG) hydrogels. AG-UPy hydrogels showed effective self-healing in a short time (about 2 min) after applying 800% strain, wherein recovery was not achieved with the AG hydrogel. However, the shear-thinning property of UPy made the AG-UPy hydrogel mechanically weaker than the AG hydrogel. To improve the mechanical strength of the AG-UPy hydrogel, we impregnated poly(ethylene glycol)-poly(urethane)/cloisite nanohybrid (PEG-PU/C) to prepare the AG-UPy/PEG-PU/C hydrogel. The incorporation of PEG-PU/C resulted in a 20-fold increase in the compression strength compared to that of the AG-UPy hydrogel. The AG-UPy/PEG-PU/C hydrogels also showed rapid self-healing. Incorporating the nanohybrid improved the cell proliferation by 2- and 1.25-fold compared to that of the AG and AG-UPy hydrogels, respectively. Therefore, PEG-PU/C combined with the UPy-functionalized polymer could be used to modulate mechanical strength and self-healing and enhance cell proliferation.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
10
|
Zasońska BA, Brož A, Šlouf M, Hodan J, Petrovský E, Hlídková H, Horák D. Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:1871. [PMID: 34199994 PMCID: PMC8200184 DOI: 10.3390/polym13111871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetic maghemite (γ-Fe2O3) nanoparticles obtained by a coprecipitation of iron chlorides were dispersed in superporous poly(2-hydroxyethyl methacrylate) scaffolds containing continuous pores prepared by the polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate porogen. The scaffolds were thoroughly characterized by scanning electron microscopy (SEM), vibrating sample magnetometry, FTIR spectroscopy, and mechanical testing in terms of chemical composition, magnetization, and mechanical properties. While the SEM microscopy confirmed that the hydrogels contained communicating pores with a length of ≤2 mm and thickness of ≤400 μm, the SEM/EDX microanalysis documented the presence of γ-Fe2O3 nanoparticles in the polymer matrix. The saturation magnetization of the magnetic hydrogel reached 2.04 Am2/kg, which corresponded to 3.7 wt.% of maghemite in the scaffold; the shape of the hysteresis loop and coercivity parameters suggested the superparamagnetic nature of the hydrogel. The highest toughness and compressive modulus were observed with γ-Fe2O3-loaded PHEMA hydrogels. Finally, the cell seeding experiments with the human SAOS-2 cell line showed a rather mediocre cell colonization on the PHEMA-based hydrogel scaffolds; however, the incorporation of γ-Fe2O3 nanoparticles into the hydrogel improved the cell adhesion significantly. This could make this composite a promising material for bone tissue engineering.
Collapse
Affiliation(s)
- Beata A. Zasońska
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| | - Antonín Brož
- Institute of Physiology CAS, Vídeňská 1083, 142 20 Prague 4, Czech Republic;
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| | - Jiří Hodan
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| | - Eduard Petrovský
- Geophysical Institute CAS, Boční II 1401, 141 31 Prague 4, Czech Republic;
| | - Helena Hlídková
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (B.A.Z.); (M.Š.); (J.H.); (H.H.)
| |
Collapse
|
11
|
Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol 2021; 180:692-708. [PMID: 33753199 DOI: 10.1016/j.ijbiomac.2021.03.097] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA was cross-linked via calcium ions which was reacted with amine groups of ECM and Amine-rGO through Schiff-base reaction. In situ forming hydrogels composed of 4% w/v OA and 0.8% w/v ECM showed appropriate gelation time and tensile Young's modulus. The electroactive hydrogels showed electrical conductivity in the range of semi-conductors and a suitable biodegradation profile for cardiac tissue engineering. Cytocompatibility analysis was performed by MTT assay against human umbilical vein endothelial cells (HUVECs), and the optimal hydrogel with 25 μg/ml concentration of Amine-rGO showed higher cell viability than that for other samples. The results of this study present the potential of OA/myocardial ECM-based hydrogel incorporated with Amine-rGO to provide a desirable platform for cardiac tissue engineering.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Latest advances to enhance the therapeutic potential of mesenchymal stromal cells for the treatment of immune-mediated diseases. Drug Deliv Transl Res 2021; 11:498-514. [PMID: 33634433 DOI: 10.1007/s13346-021-00934-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) present the capacity to secrete multiple immunomodulatory factors in response to their microenvironment. This property grants them a golden status among the novel alternatives to treat multiple diseases in which there is an unneeded or exaggerated immune response. However, important challenges still make difficult the clinical implementation of MSC-based therapies, being one of the most remarkable the lack of efficacy due to their transient immunomodulatory effects. To overcome this issue and boost the regulatory potential of MSCs, multiple strategies are currently being explored. Some of them consist of ex vivo pre-conditioning MSCs prior to their administration, including exposure to pro-inflammatory cytokines or to low oxygen concentrations. However, currently, alternative strategies that do not require such ex vivo manipulation are gaining special attention. Among them, the recreation of a three dimensional (3D) environment is remarkable. This approach has been reported to not only boost the immunomodulatory potential of MSCs but also increase their in vivo persistence and viability. The present work revises the therapeutic potential of MSCs, highlighting their immunomodulatory activity as a potential treatment for diseases caused by an exacerbated or unnecessary immune response. Moreover, it offers an updated vision of the most widely employed pre-conditioning strategies and 3D systems intended to enhance MSC-mediated immunomodulation, to conclude discussing the major challenges still to overcome in the field.
Collapse
|
13
|
Zengin A, Castro JPO, Habibovic P, van Rijt SH. Injectable, self-healing mesoporous silica nanocomposite hydrogels with improved mechanical properties. NANOSCALE 2021; 13:1144-1154. [PMID: 33400753 PMCID: PMC8100892 DOI: 10.1039/d0nr07406c] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 05/08/2023]
Abstract
Self-healing hydrogels have emerged as promising biomaterials in regenerative medicine applications. However, an ongoing challenge is to create hydrogels that combine rapid self-healing with high mechanical strength to make them applicable to a wider range of organs/tissues. Incorporating nanoparticles within hydrogels is a popular strategy to improve the mechanical properties as well as to provide additional functionalities such as stimuli responsiveness or controlled drug delivery, further optimizing their use. In this context, mesoporous silica nanoparticles (MSNs) are promising candidates as they are bioactive, improve mechanical properties, and can controllably release various types of cargo. While commonly nanoparticles are added to hydrogels as filler component, in the current study we developed thiol surface-functionalized MSNs capable of acting as chemical crosslinkers with a known hydrophilic polymer, polyethylene glycol (PEG), through dynamic thiol-disulfide covalent interactions. Due to these dynamic exchange reactions, mechanically strong nanocomposites with a storage modulus of up to 32 ± 5 kPa compared to 1.3 ± 0.3 kPa for PEG hydrogels alone, with rapid self-healing capabilities, could be formed. When non-surface modified MSNs were used, the increase in storage modulus of the hydrogels was significantly lower (3.4 ± 0.7 kPa). In addition, the nanocomposites were shown to degrade slowly over 6 weeks upon exposure to glutathione while remaining intact at physiological conditions. Together, the data argue that creating nanocomposites using MSNs as dynamic crosslinkers is a promising strategy to confer mechanical strength and rapid self-healing capabilities to hydrogels. This approach offers new possibilities for creating multifunctional self-healing biomaterials for a wider range of applications in regenerative medicine.
Collapse
Affiliation(s)
- A Zengin
- Department of Instructive Biomaterials Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands.
| | - J P O Castro
- Department of Instructive Biomaterials Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands.
| | - P Habibovic
- Department of Instructive Biomaterials Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands.
| | - S H van Rijt
- Department of Instructive Biomaterials Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands.
| |
Collapse
|
14
|
Mohammadi S, Mohammadi S, Salimi A. A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta 2020; 224:121895. [PMID: 33379103 DOI: 10.1016/j.talanta.2020.121895] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023]
Abstract
Hydrogels are 3D polymeric networks with great swelling capability in water and appropriate chemical, mechanical and biological features which make it feasible to maintain bioactive substances. Herein, we fabricated carbon dots-chitosan nanocomposite hydrogels via reacting carbon dots synthesized from various aldehyde precursors with chitosan after that functionalized with ssDNA probe for detection of microRNA-21 in MCF-7 cancer cells. More importantly, three fluorescent hydrogels were produced using schiff base reaction (forming imine bonds) among the amine in chitosan and aldehyde groups on the CDs surface. Furthermore, the hydrogel films, CDs and CDs-chitosan nanocomposite hydrogels were characterized by UV-vis absorption and fluorescence spectra, FT-IR, scanning electron microscope (SEM) and transmission electron microscopy (TEM). The DNA hydrogel bioassay strategy revealed a great stability and a superb sensitivity for microRNA-21, with a suitable linear range (0.1-125 fM) and a detection limit (0.03 fM). For sample analysis, the biosensors exhibited good linearity with MCF-7 cancer cell concentrations from 1000 to 25000, 1000-25000 and 1000-6000 cells mL-1 and detection limit of 310, 364 and 552 cells mL-1, for glutaraldehyde, nitrobezaldehyde and benzaldehyde based nanocomposite hydrogels, respectively. In addition, cell viability consequences demonstrated low probe cytotoxicity, so nanocomposite hydrogels was utilized to multicolor imaging of MCF-7 cancer cells.
Collapse
Affiliation(s)
- Susan Mohammadi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Somayeh Mohammadi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
15
|
Xing D, Liu W, Li JJ, Liu L, Guo A, Wang B, Yu H, Zhao Y, Chen Y, You Z, Lyu C, Li W, Liu A, Du Y, Lin J. Engineering 3D functional tissue constructs using self-assembling cell-laden microniches. Acta Biomater 2020; 114:170-182. [PMID: 32771588 DOI: 10.1016/j.actbio.2020.07.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
Tissue engineering using traditional size fixed scaffolds and injectable biomaterials are faced with many limitations due to the difficulties of producing macroscopic functional tissues. In this study, 3D functional tissue constructs were developed by inducing self-assembly of microniches, which were cell-laden gelatin microcryogels. During self-assembly, the accumulation of extracellular matrix (ECM) components was found to strengthen cell-cell and cell-ECM interactions, leading to the construction of a 'native' microenvironment that better preserved cell viability and functions. MSCs grown in self-assembled constructs showed increased maintenance of stemness, reduced senescence and improved paracrine activity compared with cells grown in individual microniches without self-assembly. As an example of applying the self-assembled constructs in tissue regeneration, the constructs were used to induce in vivo articular cartilage repair and successfully regenerated hyaline-like cartilage tissue in the absence of other extrinsic factors. This unique approach of developing self-assembled 3D functional constructs holds great promise for the generation of tissue engineered organoids and repair of challenging tissue defects. STATEMENT OF SIGNIFICANCE: We developed 3D functional tissue constructs using a unique gelatin-based microscopic hydrogel (microcryogels). Mesenchymal stem cells (MSCs) were loaded into gelatin microcryogels to form microscopic cell-laden units (microniches), which were induced to undergo self-assembly using a specially designed 3D printed frame. Extracellular matrix accumulation among the microniches resulted in self-assembled macroscopic constructs with superior ability to maintain the phenotypic characteristics and stemness of MSCs, together with the suppression of senescence and enhanced paracrine function. As an example of application in tissue regeneration, the self-assembled constructs were shown to successfully repair articular cartilage defects without any other supplements. This unique strategy for developing 3D functional tissue constructs allows the optimisation of stem cell functions and construction of biomimetic tissue organoids.
Collapse
Affiliation(s)
- Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China; Arthritis Institute, Peking University, Beijing 100044, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia
| | - Longwei Liu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anqi Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yu Zhao
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China; Arthritis Institute, Peking University, Beijing 100044, China
| | - Yuling Chen
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Aifeng Liu
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China; Arthritis Institute, Peking University, Beijing 100044, China.
| |
Collapse
|