1
|
Zhang X, Wu W, Zhang X, Wang Y. Effect of Laser Quenching on Wire-Powder Collaborative Arc Additive Manufacturing of Ti6Al4V-Cu Alloys with 2.4% and 7.9% Copper Content. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6176. [PMID: 39769776 PMCID: PMC11677271 DOI: 10.3390/ma17246176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
In this work, Ti6Al4V-Cu alloys with different Cu contents (2.4 and 7.9 wt.%) were fabricated using novel wire-powder synchronous arc additive manufacturing to analyze the effect of laser quenching on Ti6Al4V-Cu alloys. The results show that this method can successfully produce Ti6Al4V-Cu alloys with a uniform composition. As the copper content increased, the alloy transitioned from a Widmanstätten structure to a basketweave structure, and the yield strength and tensile strength of the alloy increased by approximately 35% due to grain refinement and the high volume fraction of Ti2Cu with eutectic lamellae. The microhardness of the alloys significantly increased after laser quenching, particularly for those with low copper contents (from 311 HV to 510 HV). Laser quenching also enhanced the corrosion resistance of the alloy in a 3.5% NaCl solution.
Collapse
Affiliation(s)
- Xingyu Zhang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China; (X.Z.); (X.Z.)
| | - Weimin Wu
- China International Science & Technology Cooperation Base for Laser Processing Robotics, College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Xiangxiang Zhang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China; (X.Z.); (X.Z.)
| | - Yanhu Wang
- China International Science & Technology Cooperation Base for Laser Processing Robotics, College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China;
| |
Collapse
|
2
|
Behjat A, Sanaei S, Mosallanejad MH, Atapour M, Sheikholeslam M, Saboori A, Iuliano L. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. BIOMATERIALS ADVANCES 2024; 163:213928. [PMID: 38941776 DOI: 10.1016/j.bioadv.2024.213928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Additive manufacturing (AM) of Ti-based biomedical implants is a pivotal research topic because of its ability to produce implants with complicated geometries. Despite desirable mechanical properties and biocompatibility of Ti alloys, one major drawback is their lack of inherent antibacterial properties, increasing the risk of postoperative infections. Hence, this research focuses on the Ti536 (Ti5Al3V6Cu) alloy, developed through Electron Beam Powder Bed Fusion (EB-PBF), exploring bio-corrosion, antibacterial features, and cell biocompatibility. The microstructural characterization revealed grain refinement and the formation of Ti2Cu precipitates with different morphologies and sizes in the Ti matrix. Electrochemical tests showed that Cu content minimally influenced the corrosion current density, while it slightly affected the stability, defect density, and chemical composition of the passive film. According to the findings, the Ti536 alloy demonstrated enhanced antibacterial properties without compromising its cell biocompatibility and corrosion behavior, thanks to Ti2Cu precipitates. This can be attributed to both the release of Cu ions and the Ti2Cu precipitates. The current study suggests that the EB-PBF fabricated Ti536 sample is well-suited for use in load-bearing applications within the medical industry. This research also offers an alloy design roadmap for novel biomedical Ti-based alloys with superior biological performance using AM methods.
Collapse
Affiliation(s)
- Amir Behjat
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Saber Sanaei
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Hossein Mosallanejad
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Luca Iuliano
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
3
|
Lukose CC, Anestopoulos I, Panagiotidis IS, Zoppi G, Black AM, Dover LG, Bowen L, Serrano-Aroca Á, Liu TX, Mendola L, Morrone D, Panayiotidis MI, Birkett M. Biocompatible Ti 3Au-Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionality. Biomater Res 2023; 27:93. [PMID: 37749659 PMCID: PMC10521510 DOI: 10.1186/s40824-023-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Biofilm formation on medical device surfaces is a persistent problem that shelters bacteria and encourages infections and implant rejection. One promising approach to tackle this problem is to coat the medical device with an antimicrobial material. In this work, for the first time, we impart antimicrobial functionality to Ti3Au intermetallic alloy thin film coatings, while maintaining their superior mechanical hardness and biocompatibility. METHODS A mosaic Ti sputtering target is developed to dope controlled amounts of antimicrobial elements of Ag and Cu into a Ti3Au coating matrix by precise control of individual target power levels. The resulting Ti3Au-Ag/Cu thin film coatings are then systematically characterised for their structural, chemical, morphological, mechanical, corrosion, biocompatibility-cytotoxicity and antimicrobial properties. RESULTS X-ray diffraction patterns reveal the formation of a super hard β-Ti3Au phase, but the thin films undergo a transition in crystal orientation from (200) to (211) with increasing Ag concentration, whereas introduction of Cu brings no observable changes in crystal orientation. Scanning and transmission electron microscopy analysis show the polyhedral shape of the Ti3Au crystal but agglomeration of Ag particles between crystal grains begins at 1.2 at% Ag and develops into large granules with increasing Ag concentration up to 4.1 at%. The smallest doping concentration of 0.2 at% Ag raises the hardness of the thin film to 14.7 GPa, a 360% improvement compared to the ∼4 GPa hardness of the standard Ti6Al4V base alloy. On the other hand, addition of Cu brings a 315-330% improvement in mechanical hardness of films throughout the entire concentration range of 0.5-7.1 at%. The thin films also show good electrochemical corrosion resistance and a > tenfold reduction in wear rate compared to Ti6Al4V alloy. All thin film samples exhibit very safe cytotoxic profiles towards L929 mouse fibroblast cells when analysed with Alamar blue assay, with ion leaching concentrations lower than 0.2 ppm for Ag and 0.08 ppm for Cu and conductivity tests reveal the positive effect of increased conductivity on myogenic differentiation. Antimicrobial tests show a drastic reduction in microbial survival over a short test period of < 20 min for Ti3Au films doped with Ag or Cu concentrations as low as 0.2-0.5 at%. CONCLUSION Therefore, according to these results, this work presents a new antimicrobial Ti3Au-Ag/Cu coating material with excellent mechanical performance with the potential to develop wear resistant medical implant devices with resistance to biofilm formation and bacterial infection.
Collapse
Affiliation(s)
- Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Iraklis-Stavros Panagiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Guillaume Zoppi
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Anna M Black
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Lynn G Dover
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Leon Bowen
- Department of Physics, G.J. Russell Microscopy Facility, Durham University, Durham, DH1 3LE, UK
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Terence Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | | | | | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
4
|
Li S, Liu H, Siddiqui MA, Li Y, Wang H, Zhang SY, Ren L, Yang K. Corrosion Behavior and Bio-Functions of the Ultrafine-Grained Ti6Al4V-5Cu Alloy with a Dual-Phase Honeycomb Shell Structure in Simulated Body Fluid. ACS Biomater Sci Eng 2023; 9:2362-2375. [PMID: 37024434 DOI: 10.1021/acsbiomaterials.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Titanium alloys are widely used in biomedical applications. However, cases of implant failure due to fatigue fracture and bacterial infection are common. In addition, implants are susceptible to metal ions (Al, V) released by long-term exposure to human body fluids, which causes neuropathy, mental disorders, and other diseases. Thus, development of novel materials to achieve long-term safety of implants is currently a research hotspot. Recently, our research group has developed an ultrafine-grained Ti6Al4V-5Cu alloy with a unique "dual-phase honeycomb shell" (DPHS) structure, which possesses high fatigue strength and stability. This study further affirmed its higher corrosion behavior, antibacterial properties, and cytocompatibility compared to the coarse-grained Ti6Al4V and Ti6Al4V-5Cu alloys. The ultrafine-grained structure of Ti6Al4V-5Cu having DPHS increased the proportion of phases (Cu-rich phases, β-phase, and Ti2Cu intermetallic phase) with a lower surface potential. It was observed that the developed microstructure was conducive to a stable configuration of the oxide (passive) layer on the alloy surface. In addition, the low-phase interfacial energies of the ultrafine-grained structure with DPHS even facilitated the improvement of the denseness of the protective passive film and eventually enhanced the corrosion behavior. Besides, the fine-Cu-rich phases and the micro-galvanic couples formed between them and the matrix significantly increased the contact frequency of bacteria, thus increasing the contact sterilization efficiency of the ultrafine-grained Ti6Al4V-5Cu alloy. These results showed that the new ultrafine-grained Ti6Al4V-5Cu alloy has excellent corrosion resistance and biological functions for clinical application.
Collapse
Affiliation(s)
- Susu Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Hui Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Muhammad Ali Siddiqui
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Yi Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Hai Wang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Shu Yuan Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Ling Ren
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Binzhou Institute of Technology, Shandong Key Laboratory of Advanced Aluminum Materials and Technology, Binzhou 256606, China
| | - Ke Yang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
5
|
Jia F, Bian A, Wu Z, Li M, Yang H, Huang X, Xie L, Qiao H, Lin H, Huang Y. One‐Step Electrodeposition of Multi‐element Doped Hydroxyapatite Nanocoating Leading to Enhanced Cytocompatible and Antibacterial Properties of Titanium Implants. ChemistrySelect 2023. [DOI: 10.1002/slct.202203974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Fenghuan Jia
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Anqi Bian
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Zongze Wu
- Department of Interventional Radiology Shenzhen People's Hospital (The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Meiyu Li
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education Wuhan Institute of Technology Wu Han Shi Wuhan.430205 China
| | - Xiao Huang
- School of Physical Education Guangxi University of Science and Technology Liuzhou 545006 China
| | - Lei Xie
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| | - Haixia Qiao
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - He Lin
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Yong Huang
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| |
Collapse
|
6
|
Mahmoudi P, Akbarpour MR, Lakeh HB, Jing F, Hadidi MR, Akhavan B. Antibacterial Ti-Cu implants: A critical review on mechanisms of action. Mater Today Bio 2022; 17:100447. [PMID: 36278144 PMCID: PMC9579810 DOI: 10.1016/j.mtbio.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Titanium (Ti) has been widely used for manufacturing of bone implants because of its mechanical properties, biological compatibility, and favorable corrosion resistance in biological environments. However, Ti implants are prone to infection (peri-implantitis) by bacteria which in extreme cases necessitate painful and costly revision surgeries. An emerging, viable solution for this problem is to use copper (Cu) as an antibacterial agent in the alloying system of Ti. The addition of copper provides excellent antibacterial activities, but the underpinning mechanisms are still obscure. This review sheds light on such mechanisms and reviews how incorporation of Cu can render Ti-Cu implants with antibacterial activity. The review first discusses the fundamentals of interactions between bacteria and implanted surfaces followed by an overview of the most common engineering strategies utilized to endow an implant with antibacterial activity. The underlying mechanisms for antibacterial activity of Ti-Cu implants are then discussed in detail. Special attention is paid to contact killing mechanisms because the misinterpretation of this mechanism is the root of discrepancies in the literature.
Collapse
Affiliation(s)
- Pezhman Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11365-9466, Iran
| | - Mohammad Reza Akbarpour
- Department of Materials Engineering, University of Maragheh, Maragheh, P.O. Box 55136-553, Iran
| | | | - Fengjuan Jing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Mohammad Reza Hadidi
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Behnam Akhavan
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Research Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
7
|
Arroussi M, Zhao J, Bai C, Zhang S, Xia Z, Jia Q, Yang K, Yang R. Evaluation of inhibition effect on microbiologically influenced corrosion of Ti-5Cu alloy against marine Bacillus vietnamensis biofilm. Bioelectrochemistry 2022; 149:108265. [DOI: 10.1016/j.bioelechem.2022.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
|
8
|
Zhao X, Cai D, Hu J, Nie J, Chen D, Qin G, Zhang E. A high-hydrophilic Cu 2O-TiO 2/Ti 2O 3/TiO coating on Ti-5Cu alloy: Perfect antibacterial property and rapid endothelialization potential. BIOMATERIALS ADVANCES 2022; 140:213044. [PMID: 35932660 DOI: 10.1016/j.bioadv.2022.213044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
In order to make novel antibacterial Ti-Cu alloy more suitable for cardiovascular implant application, a Cu-containing oxide coating was manufactured on Ti-Cu alloy by plasma-enhanced oxidation deposition in plasma enhanced chemical vapor deposition (PECVD) equipment to further improve the antibacterial ability and the surface bioactivity. The results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and water contact angle indicated that a sustainably high-hydrophilic Cu2O-TiO2/Ti2O3/TiO coating with nano-morphology on Ti-5Cu was successfully constructed. The corrosion performance results showed that the coating enhanced the corrosion resistance while releasing more Cu2+, compared with Ti-5Cu. Antibacterial tests confirmed the perfect antibacterial property of the coating (R ≥ 99.9 %), superior to Ti-Cu alloy (R > 90 %). More delightfully, it was observed by phalloidin-FITC and DAPI staining that the coating improved the early adhesion of HUVEC cells mainly due to strong hydrophilicity and nano-morphology. It was demonstrated that the extract of the coated sample significantly promoted proliferation (RGR = 112 %-138 % after cultivation for 1 to 3 days) and migration of HUVEC cells due to the appropriate Cu2+ release concentration. Hemolysis assay and platelet adhesion results showed that the coating had excellent blood compatibility. All results suggested that the coating on Ti-Cu alloy might be a promising surface with the perfect antibacterial ability, blood compatibility and evident promoting endothelialization ability for the cardiovascular application.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Diangeng Cai
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jingjun Nie
- Laboratory of Bone tissue engineering, Beijing Laboratory of biomedical materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Dafu Chen
- Laboratory of Bone tissue engineering, Beijing Laboratory of biomedical materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China.
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China
| | - Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
9
|
Tang JF, Huang PY, Lin JH, Liu TW, Yang FC, Chang CL. Microstructure and Antimicrobial Properties of Zr-Cu-Ti Thin-Film Metallic Glass Deposited Using High-Power Impulse Magnetron Sputtering. MATERIALS 2022; 15:ma15072461. [PMID: 35407795 PMCID: PMC8999468 DOI: 10.3390/ma15072461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
Zr-Cu based thin-film metallic glass (TFMG) has good glass-forming ability and the addition of a third element can create a chaotic system capable of inhibiting the nucleation and growth of crystals. This study focused on TFMGs made with Zr, Cu, and Ti in various compositions deposited via high-impulse magnetron sputtering on silicon and 304 stainless-steel substrates. Detailed analysis was performed on the microstructure and surface characteristics of the resulting coatings. Transmission electron microscopy revealed that the multilayer structure changed to a nanocrystalline structure similar to an amorphous coating. The excellent hydrophobicity of Zr-Cu-Ti TFMGs can be attributed to their ultra-smooth surface without any grain boundaries. The excellent antimicrobial effects can be attributed to a hydrophobic surface resisting cell adhesion and the presence of copper ions, which are lethal to microbes.
Collapse
Affiliation(s)
- Jian-Fu Tang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei City 106, Taiwan; (J.-F.T.); (J.-H.L.)
| | - Po-Yuan Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan; (P.-Y.H.); (T.-W.L.)
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei City 106, Taiwan; (J.-F.T.); (J.-H.L.)
| | - Ting-Wei Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan; (P.-Y.H.); (T.-W.L.)
| | - Fu-Chi Yang
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan;
| | - Chi-Lung Chang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan; (P.-Y.H.); (T.-W.L.)
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan;
- Correspondence:
| |
Collapse
|
10
|
Fabrication and characterisation of low-cost powder metallurgy Ti-xCu-2.5Al alloys produced for biomedical applications. J Mech Behav Biomed Mater 2021; 126:105022. [PMID: 34871955 DOI: 10.1016/j.jmbbm.2021.105022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/01/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022]
Abstract
Ti and Ti-based materials are of growing interest as biocompatible structural materials in a wide range of biomedical applications. Traditionally, one of the main factors hindering the wider use of this class of materials has been the relatively high manufacturing cost. Today, Ti-6Al-4V remains the most widely used material for dental and orthopaedic implants. However, the presence of cytotoxic vanadium in its composition casts doubt on the safety of using this alloy as biomedical material. This study aims to study the microstructural features and mechanical properties of ternary alloys Ti-xCu-2.5Al (where x = 0.5-5 wt%Cu) obtained by powder metallurgy (PM) methods. The attractiveness of this group of materials lies in its economy due to the significantly lower cost of Cu compared to vanadium and the intrinsic advantages of PM. The obtained samples demonstrated increasing tensile strength and Vickers hardness values with increasing Cu content, from 640 MPa to 195 HV to 800 MPa and 250HV, respectively. At the same time, an inverse relationship was observed for the elongation. A higher content of β-stabiliser is accompanied by the formation of a more significant number of spherically shaped pores and a refined lamellar structure which are responsible for the changes in mechanical properties.
Collapse
|
11
|
Wang B, Wu Z, Wang S, Wang S, Niu Q, Wu Y, Jia F, Bian A, Xie L, Qiao H, Chang X, Lin H, Zhang H, Huang Y. Mg/Cu-doped TiO 2 nanotube array: A novel dual-function system with self-antibacterial activity and excellent cell compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112322. [PMID: 34474873 DOI: 10.1016/j.msec.2021.112322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
Many studies were conducted to change the surface morphology and chemical composition of Ti implants for the improvement of antibacterial ability and osseointegration between medical Ti and surrounding bone tissue. In this study, we successfully prepared a novel dual-function coating on pure Ti surface, i.e. Cu and Mg-co-doped TiO2 nanotube (TN) coating, by combining anodisation and hydrothermal treatment (HT), which could act as a delivery platform for the sustained release of Cu and Mg ions. Results showed that the amounts of Cu and Mg were about 5.43 wt%-6.55 wt% and 0.69 wt%-0.73 wt%, respectively. In addition, the surface morphology of Cu and Mg-co-doped TN (CuMTN) coatings transformed into nanoneedles after HT for 1 h. Compared with TN, CuMTN had no change in roughness and remarkable improved hydrophilicity. Antibacterial tests revealed that CuMTN had an antibacterial rate of more than 93% against Escherichia coli and Staphylococcus aureus, thereby showing excellent antibacterial properties. In addition, CuMTN could induce the formation of apatite well after being immersed in simulated body fluid, showing good biological activity. Preosteoblasts (MC3T3-E1) cultured on CuMTN-coated Ti demonstrated better proliferation and osteogenic differentiation than pristine and as-anodised specimens. To the best of our best knowledge, this study had successfully attempted to combine anodisation and HT, introduce Cu/Mg elements and functionalise Ti-based implant surfaces with enhanced hydrophilicity, osteogenesis and antimicrobial properties that can meet clinical needs for the first time.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Zongze Wu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Shuo Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Saisai Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Qimeng Niu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Yuwei Wu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Fenghuan Jia
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Anqi Bian
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haixia Qiao
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaotong Chang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Zhang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| |
Collapse
|
12
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
13
|
Effect of Low Copper Addition to As-Forged 304 Stainless Steel for Dental Applications. METALS 2020. [DOI: 10.3390/met11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The aim of this study was to investigate the effect of incorporating low copper (0, 0.5, 1, 1.5, and 2 wt.%) additions into as-forged AISI 304 stainless steel (304SS). The microstructures and mechanical properties of the steel were examined using scanning electron microscopy and a universal testing machine. The antibacterial properties of the Cu-bearing 304SS specimens were investigated using Escherichia coli. Each specimen was soaked in artificial saliva to detect the release of copper ions through inductively coupled plasma atomic emission spectrometry. The addition of copper had no significant effect on the microstructure of the as-forged Cu-bearing 304SS, but it slightly increased its maximum tensile strength. The antibacterial rate of the as-cast and as-forged 304SS with 2 wt.% Cu was over 80%, which corresponded to an increase in the release of copper ions. This study demonstrates that low-Cu-content stainless steel can reduce bacteria and can be a suitable material for the oral environment because of the low release of Cu ions.
Collapse
|
14
|
Xu D, Wang T, Wang S, Jiang Y, Wang Y, Chen Y, Bi Z, Geng S. Antibacterial Effect of the Controlled Nanoscale Precipitates Obtained by Different Heat Treatment Schemes with a Ti-Based Nanomaterial, Ti-7.5Mo-5Cu Alloy. ACS APPLIED BIO MATERIALS 2020; 3:6145-6154. [PMID: 35021747 DOI: 10.1021/acsabm.0c00716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that copper is an excellent option for a Ti-based alloy component as a β-stabilizer that provides improved biocompatibility and antibacterial ability. The development of a Ti-based nanomaterial containing Cu is a promising strategy for addressing implant-associated infections (OII). However, the antibacterial mechanism of copper-related alloys is still unknown. There are two popular hypotheses: copper ion release sterilization and alloy contact sterilization. The main mechanism of contact sterilization may be Cu-related phase (Ti2Cu) precipitation. Because excess copper can lead to cytotoxicity and reduce the β-Ti phase content, molybdenum needs to be added to the alloy given its well-known and widely researched β-stabilizer characteristics, which can provide satisfactory mechanical properties, wear resistance, and biocompatibility. Our study created a Ti-based nanomaterial, Ti-7.5Mo-5Cu, and performed two kinds of heat treatment schemes at different solution temperatures: 750 and 900 °C. The above schemes resulted in homogeneous and heterogeneous nucleation on the precipitation behavior of the Ti2Cu crystal phase, which controlled its amount, distribution, and size. Finally, our results showed that Ti-7.5Mo-5Cu, especially at 900 °C, possessed excellent antibacterial ability, corrosion resistance, cytocompatibility, and induced osteogenic differentiation, indicating its potential for use as a biomedical antibacterial alloy in the future.
Collapse
Affiliation(s)
- Duo Xu
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tianyu Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shudan Wang
- Department of Ophthalmology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yao Jiang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yajing Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yuxi Chen
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhenggang Bi
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shuo Geng
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
15
|
Xu Y, Jiang J, Yang Z, Zhao Q, Chen Y, Zhao Y. The Effect of Copper Content on the Mechanical and Tribological Properties of Hypo-, Hyper- and Eutectoid Ti-Cu Alloys. MATERIALS 2020; 13:ma13153411. [PMID: 32756320 PMCID: PMC7435961 DOI: 10.3390/ma13153411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
Titanium alloys are widely used in aerospace, chemical, biomedical and other important fields due to outstanding properties. The mechanical behavior of Ti alloys depends on microstructural characteristics and type of alloying elements. The purpose of this study was to investigate the effects of different Cu contents (2.5 wt.%, 7 wt.% and 14 wt.%) on mechanical and frictional properties of titanium alloys. The properties of titanium alloy were characterized by tensile test, electron microscope, X-ray diffraction, differential scanning calorimetry, reciprocating friction and wear test. The results show that the intermediate phase that forms the eutectoid structure with α-Ti was identified as FCC Ti2Cu, and no primary β phase was formed. With the increase of Cu content, the Ti2Cu phase precipitation in the alloy increases. Ti2Cu particles with needle structure increase the dislocation pinning effect on grain boundary and improve the strength and hardness of titanium alloy. Thus, Ti-14Cu shows the lowest elongation, the best friction and wear resistance, which is caused by the existence of Ti2Cu phases. It has been proved that the mechanical and frictional properties of Ti-Cu alloys can be adjusted by changing the Cu content, so as to better meet its application in the medical field.
Collapse
Affiliation(s)
- Yiku Xu
- School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China; (J.J.); (Z.Y.); (Q.Z.)
- Correspondence: (Y.X.); (Y.C.); Tel.: +86-150-2918-9267 (Y.X.); +86-133-8494-8620 (Y.C.)
| | - Jianli Jiang
- School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China; (J.J.); (Z.Y.); (Q.Z.)
| | - Zehui Yang
- School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China; (J.J.); (Z.Y.); (Q.Z.)
| | - Qinyang Zhao
- School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China; (J.J.); (Z.Y.); (Q.Z.)
| | - Yongnan Chen
- School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China; (J.J.); (Z.Y.); (Q.Z.)
- Correspondence: (Y.X.); (Y.C.); Tel.: +86-150-2918-9267 (Y.X.); +86-133-8494-8620 (Y.C.)
| | - Yongqing Zhao
- Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China;
| |
Collapse
|