1
|
Nutt K, Dombros-Ryan Z, Birea R, Franks EV, Eastham S, Godwin M, Adams CF, Chari DM, Jenkins SI. Electrospun Polycaprolactone (PCL) Nanofibers Induce Elongation and Alignment of Co-Cultured Primary Cortical Astrocytes and Neurons. MICROMACHINES 2025; 16:256. [PMID: 40141867 PMCID: PMC11946388 DOI: 10.3390/mi16030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Neuromimetic in vitro models, simulating in vivo architecture/organization, are urgently needed to reduce experimental reliance on live animals. Our group recently reported a novel brain tissue derivation protocol, simultaneously deriving all major cortical cell types (including immune cells) in a facile protocol, generating a network of neurons in a single growth medium, which was interfaced with nanomaterials. This represents a significant advance, as tissue engineers overwhelmingly use diverse methods to derive and combine individual brain cells for materials-interfacing. However, this multicellular model lacked cellular directionality/structural organization (unlike the highly organized cortical circuits in vivo). Synthetic nanofiber constructs are of high value in tissue engineering, providing directional cues for cells. Most neuro-nanofiber studies employ simple monocultures of astrocytes/neurons and commonly use peripheral neurons rather than central nervous system populations. Here, we have interfaced our complex brain model (neurons/astrocytes derived simultaneously) with randomly oriented or aligned polycaprolactone (PCL) fiber meshes. Both cell types showed targeted extension along aligned fibers versus coverslips or random fibers. A new analysis method developed in-house demonstrated that peak orientations for astrocytes and neurons correlated with aligned nanofibers. Our data support the concept that nanofiber scaffolds can achieve organized growth of mixed cortical neural cell populations, mimicking neural architecture.
Collapse
Affiliation(s)
- Kayleigh Nutt
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Zoe Dombros-Ryan
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Ruxandra Birea
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Emily Victoria Franks
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Sarah Eastham
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK
| | - Morgan Godwin
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Chris F. Adams
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Divya Maitreyi Chari
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Stuart Iain Jenkins
- Neural Tissue Engineering: Keele (NTEK), Keele University, Keele ST5 5BG, UK (Z.D.-R.); (E.V.F.); (C.F.A.)
- School of Medicine, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
2
|
Renkler NZ, Scialla S, Russo T, D’Amora U, Cruz-Maya I, De Santis R, Guarino V. Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain. Pharmaceutics 2024; 16:134. [PMID: 38276504 PMCID: PMC10819193 DOI: 10.3390/pharmaceutics16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales-from several hundred microns down to tens of nanometers-for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches-based on EFDTs-for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions.
Collapse
Affiliation(s)
- Nergis Zeynep Renkler
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| |
Collapse
|
3
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Kalia VC, Patel SKS, Lee JK. Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers (Basel) 2023; 15:polym15081937. [PMID: 37112084 PMCID: PMC10144186 DOI: 10.3390/polym15081937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Kahdim QS, Abdelmoula N, Al-Karagoly H, Albukhaty S, Al-Saaidi J. Fabrication of a Polycaprolactone/Chitosan Nanofibrous Scaffold Loaded with Nigella sativa Extract for Biomedical Applications. BIOTECH 2023; 12:biotech12010019. [PMID: 36810446 PMCID: PMC9944449 DOI: 10.3390/biotech12010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
In this study, biocompatible electrospun nanofiber scaffolds were produced using poly(-caprolactone (PCL)/chitosan (CS) and Nigella sativa (NS) seed extract, and their potential for biomedical applications was investigated. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), total porosity measurements, and water contact angle measurements were used to evaluate the electrospun nanofibrous mats. Additionally, the antibacterial activities of Escherichia coli and Staphylococcus aureus were investigated, as well as cell cytotoxicity and antioxidant activity, using MTT and DPPH assays, respectively. The obtained PCL/CS/NS nanofiber mat was observed by SEM to have a homogeneous and bead-free morphology, with average diameters of 81.19 ± 4.38 nm. Contact angle measurements showed that the wettability of the electrospun PCL/Cs fiber mats decreased with the incorporation of NS when compared to the PCL/CS nanofiber mats. Efficient antibacterial activity against S. aureus and E. coli was displayed, and an in vitro cytotoxic assay demonstrated that the normal murine fibroblast cell line (L929 cells) remained viable after 24, 48, and 72 h following direct contact with the produced electrospun fiber mats. The results suggest that the PCL/CS/NS hydrophilic structure and the densely interconnected porous design are biocompatible materials, with the potential to treat and prevent microbial wound infections.
Collapse
Affiliation(s)
- Qasim Shakir Kahdim
- College of Basic Education, University of Babylon, Babylon 51002, Iraq
- Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences of Sfax, University of Sfax, BP 1171, Sfax 3000, Tunisia
- Correspondence: (Q.S.K.); (H.A.-K.)
| | - Najmeddine Abdelmoula
- Laboratory of Multifunctional Materials and Applications (LaMMA), LR16ES18, Faculty of Sciences of Sfax, University of Sfax, BP 1171, Sfax 3000, Tunisia
| | - Hassan Al-Karagoly
- College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
- Correspondence: (Q.S.K.); (H.A.-K.)
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Jabbar Al-Saaidi
- College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| |
Collapse
|
6
|
Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett R, Lucero-Saucedo SL, Parra-Saldívar R, Sosa-Hernández JE. Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19. Front Bioeng Biotechnol 2021; 9:597958. [PMID: 34055754 PMCID: PMC8160436 DOI: 10.3389/fbioe.2021.597958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past years, biomaterials-based nano cues with multi-functional characteristics have been engineered with high interest. The ease in fine tunability with maintained compliance makes an array of nano-bio materials supreme candidates for the biomedical sector of the modern world. Moreover, the multi-functional dimensions of nano-bio elements also help to maintain or even improve the patients' life quality most securely by lowering or diminishing the adverse effects of in practice therapeutic modalities. Therefore, engineering highly efficient, reliable, compatible, and recyclable biomaterials-based novel corrective cues with multipurpose applications is essential and a core demand to tackle many human health-related challenges, e.g., the current COVID-19 pandemic. Moreover, robust engineering design and properly exploited nano-bio materials deliver wide-ranging openings for experimentation in the field of interdisciplinary and multidisciplinary scientific research. In this context, herein, it is reviewed the applications and potential on tissue engineering and therapeutics of COVID-19 of several biomaterials. Following a brief introduction is a discussion of the drug delivery routes and mechanisms of biomaterials-based nano cues with suitable examples. The second half of the review focuses on the mainstream applications changing the dynamics of 21st century materials. In the end, current challenges and recommendations are given for a healthy and foreseeable future.
Collapse
|
7
|
Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. BIORESOURCE TECHNOLOGY 2021; 326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Plastics are an integral part of most of the daily requirements. Indiscriminate usage and disposal have led to the accumulation of massive quantities of waste. Their non-biodegradable nature makes it increasingly difficult to manage and dispose them. To counter this impending disaster, biodegradable polymers, especially polyhydroxy-alkanoates (PHAs), have been envisaged as potential alternatives. Owing to their unique physicochemical characteristics, PHAs are gaining importance for versatile applications in the agricultural and medical sectors. Applications in the medical sector are more promising because of their commercial viability and sustainability. Despite such potential, their production and commercialization are significant challenges. The major limitations are their poor mechanical strength, production in small quantities, costly feed, and lack of facilities for industrial production. This article provides an overview of the contemporary progress in the field, to attract researchers and stakeholders to further exploit these renewable resources to produce biodegradable plastics on a commercial scale.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
9
|
Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020; 12:E920. [PMID: 32326661 PMCID: PMC7240402 DOI: 10.3390/polym12040920] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Niall Beagan
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| |
Collapse
|