1
|
Ruiz GCM, do Carmo Morato LF, Pazin WM, Oliveira ON, Constantino CJL. In situ interaction between the hormone 17α-ethynylestradiol and the liquid-ordered phase composed of the lipid rafts sphingomyelin and cholesterol. Bioorg Chem 2024; 143:107002. [PMID: 38006790 DOI: 10.1016/j.bioorg.2023.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Hormone treatments are frequently associated with cardiovascular diseases and cancers in women. Additionally, the detrimental effects of their presence as contaminants in water remain a concern. The transport of hormones through cell membranes is essential for their biological action, but investigating cell permeability is challenging owing to the experimental difficulty in dealing with whole cells. In this paper, we study the interaction of the synthetic hormone 17α-ethynylestradiol (EE2) with membrane models containing the key raft components sphingomyelin (SM) and cholesterol (Chol). The models consisted of Langmuir monolayers and giant unilamellar vesicles (GUVs) that represent bilayers. EE2 induced expansion of SM monolayers upon interacting with the non-hydrated amide group of SM head, but it had practically no effect on SM GUVs because these group are not available for interaction in bilayers. In contrast, EE2 interacted with hydrated phosphate group (PO2-) and amide group of SM/Chol mixture monolayer, which could explain the loss in phase contrast of liquid-ordered GUVs suggesting pore formation. A comparison with reported EE2 effects on GUVs in the fluid phase, for which no loss in phase contrast was observed, indicates that the liquid-ordered phase consisting of lipid rafts is relevant to be associated with the changes on cell permeability caused by the hormones.
Collapse
Affiliation(s)
- Gilia Cristine Marques Ruiz
- Department of Physics, School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| | - Luis Fernando do Carmo Morato
- Department of Physics, School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | | | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
| | - Carlos José Leopoldo Constantino
- Department of Physics, School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| |
Collapse
|
2
|
Pazin WM, Miranda RR, Toledo KA, Kjeldsen F, Constantino CJL, Brewer JR. pH-Dependence Cytotoxicity Evaluation of Artepillin C against Tumor Cells. Life (Basel) 2023; 13:2186. [PMID: 38004326 PMCID: PMC10672498 DOI: 10.3390/life13112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Brazilian green propolis is a well-known product that is consumed globally. Its major component, Artepillin C, showed potential as an antitumor product. This study explored the impact of Artepillin C on fibroblast and glioblastoma cell lines, used as healthy and very aggressive tumor cell lines, respectively. The focus of the study was to evaluate the pH-dependence of Artepillin C cytotoxicity, since tumor cells are known to have a more acidic extracellular microenvironment compared to healthy cells, and Artepillin C was shown to become more lipophilic at lower pH values. Investigations into the pH-dependency of Artepillin C (6.0-7.4), through viability assays and live cell imaging, revealed compelling insights. At pH 6.0, MTT assays showed the pronounced cytotoxic effects of Artepillin C, yielding a notable reduction in cell viability to less than 12% among glioblastoma cells following a 24 h exposure to 100 µM of Artepillin C. Concurrently, LDH assays indicated significant membrane damage, affecting approximately 50% of the total cells under the same conditions. Our Laurdan GP analysis suggests that Artepillin C induces autophagy, and notably, provokes a lipid membrane packing effect, contributing to cell death. These combined results affirm the selective cytotoxicity of Artepillin C within the acidic tumor microenvironment, emphasizing its potential as an effective antitumor agent. Furthermore, our findings suggest that Artepillin C holds promise for potential applications in the realm of anticancer therapies given its pH-dependence cytotoxicity.
Collapse
Affiliation(s)
- Wallance M. Pazin
- Department of Physics and Meteorology, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Renata R. Miranda
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Karina A. Toledo
- Department of Biological Sciences, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil;
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Carlos J. L. Constantino
- Department of Physics, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| |
Collapse
|
3
|
Mrug G, Hodyna D, Metelytsia L, Kovalishyn V, Trokhimenko O, Bondarenko S, Kondratyuk K, Kozitskiy A, Frasinyuk M. Structure-Activity Relationship Prediction-Based Synthesis and Cytotoxicity Evaluation against the HEp-2 Laryngeal Carcinoma Cell of Isoflavone-Cytisine Mannich Bases. Chem Biodivers 2023; 20:e202300560. [PMID: 37477067 DOI: 10.1002/cbdv.202300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
QSAR analysis of previously synthesized and nature-inspired virtual isoflavone-cytisine hybrids against the HEp-2 laryngeal carcinoma cell lines was performed using the OCHEM web platform. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds such as 8-cytisinylmethyl derivatives of 5,7- and 6,7-dihydroxyisoflavones. The synthetic procedure for selective aminomethylation of 5,7-dihydroxyisoflavones with cytisine was developed. In vitro testing identified compound 7 f with cisplatin-level cytotoxicity against HEp-2 cell lines and compound 10 which was twice active than cisplatin after 72 h of incubation.
Collapse
Affiliation(s)
- Galyna Mrug
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Diana Hodyna
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Larysa Metelytsia
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Vasyl Kovalishyn
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Olena Trokhimenko
- Shupyk National Healthcare University of Ukraine, Kyiv, 04112, Ukraine
| | - Svitlana Bondarenko
- Department of Food Chemistry, National University of Food Technologies, Kyiv, 01601, Ukraine
| | - Kostyantyn Kondratyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | | | - Mykhaylo Frasinyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
- Enamine Ltd., Kyiv, 02094, Ukraine
| |
Collapse
|
4
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
5
|
Camacho SA, Kobal MB, Moreira LG, Bistaffa MJ, Roque TC, Pazin WM, Toledo KA, Oliveira ON, Aoki PHB. The efficiency of photothermal action of gold shell-isolated nanoparticles against tumor cells depends on membrane interactions. Colloids Surf B Biointerfaces 2021; 211:112301. [PMID: 34968778 DOI: 10.1016/j.colsurfb.2021.112301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Photoinduced hyperthermia with nanomaterials has been proven effective in photothermal therapy (PTT) of tumor tissues, but a precise control in PTT requires determination of the molecular-level mechanisms. In this paper, we determined the mechanisms responsible for the action of photoexcited gold shell-isolated nanoparticles (AuSHINs) in reducing the viability of MCF7 (glandular breast cancer) and especially A549 (lung adenocarcinoma) cells in vitro experiments, while the photoinduced damage to healthy cells was much smaller. The photoinduced effects were more significant than using other nanomaterials, and could be explained by the different effects from incorporating AuSHINs on Langmuir monolayers from lipid extracts of tumoral (MCF7 and A549) and healthy cells. The incorporation of AuSHINs caused similar expansion of the Langmuir monolayers, but Fourier-transform infrared spectroscopy (FTIR) data of Langmuir-Schaefer films (LS) indicated distinct levels of penetration into the monolayers. AuSHINs penetrated deeper into the A549 extract monolayers, affecting the vibrational modes of polar groups and carbon chains, while in MCF7 monolayers penetration was limited to the surroundings of the polar groups. Even smaller insertion was observed for monolayers of the healthy cell extract. The photochemical reactions were modulated by AuSHINs penetration, since upon irradiation the surface area of A549 monolayer decreased owing to lipid chain cleavage by oxidative reactions. For MCF7 monolayers, hydroperoxidation under illumination led to a ca. 5% increase in surface area. The monolayers of healthy cell lipid extract were barely affected by irradiation, consistent with the lowest degree of AuSHINs insertion. In summary, efficient photothermal therapy may be devised by producing AuSHINs capable of penetrating the chain region of tumor cell membranes.
Collapse
Affiliation(s)
- Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Lucas G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Maria J Bistaffa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Thamires C Roque
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Wallance M Pazin
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil; São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto 15054-000, Brazil
| | - Osvaldo N Oliveira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
6
|
Bistaffa MJ, Camacho SA, Melo CFOR, Catharino RR, Toledo KA, Aoki PHB. Plasma membrane permeabilization to explain erythrosine B phototoxicity on in vitro breast cancer cell models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112297. [PMID: 34482154 DOI: 10.1016/j.jphotobiol.2021.112297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Lipid oxidation is ubiquitous in cell life under oxygen and essential for photodynamic therapy (PDT) of carcinomas. However, the mechanisms underlying lipid oxidation in rather complex systems such as plasma membranes remain elusive. Herein, Langmuir monolayers were assembled with the lipid extract of glandular breast cancer (MCF7) cells and used to probe the molecular interactions allowing adsorption of the photosensitizer (PS) erythrosine B and subsequent photooxidation outcomes. Surface pressure (π) versus area (cm2/mL) isotherms of MCF7 lipid extract shifted to larger areas upon erythrosine incorporation, driven by secondary interactions that affected the orientation of the carbonyl groups and lipid chain organization. Light-irradiation increased the surface area of the MCF7 lipid extract monolayer containing erythrosine owing to the lipid hydroperoxidation, which may further undergo decomposition, resulting in the chain cleavage of phospholipids and membrane permeabilization. Incorporation of erythrosine by MCF7 cells induced slight toxic effects on in vitro assays, differently of the severe phototoxicity caused by light-irradiation, which significantly decreased cell viability by more than 75% at 2.5 × 10-6 mol/L of erythrosine incubated for 3 and 24 h, reaching nearly 90% at 48 h of incubation. The origin of the phototoxic effects is in the rupture of the plasma membrane shown by the frontal (FSC) and side (SSC) light scattering of flow cytometry. Consistent with hydroperoxide decomposition, membrane permeabilization was also confirmed by cleaved lipids detected in mass spectrometry and subsidizes the necrotic pathway of cell death.
Collapse
Affiliation(s)
- Maria J Bistaffa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Carlos F O R Melo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Rodrigo R Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil..
| |
Collapse
|
7
|
|
8
|
Shahinozzaman M, Basak B, Emran R, Rozario P, Obanda DN. Artepillin C: A comprehensive review of its chemistry, bioavailability, and pharmacological properties. Fitoterapia 2020; 147:104775. [PMID: 33152464 DOI: 10.1016/j.fitote.2020.104775] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Artepillin C (ARC), a prenylated derivative of p-coumaric acid, is one of the major phenolic compounds found in Brazilian green propolis (BGP) and its botanical source Baccharis dracunculifolia. Numerous studies on ARC show that its beneficial health effects correlate with the health effects of both BGP and B. dracunculifolia. Its wide range of pharmacological benefits include antioxidant, antimicrobial, anti-inflammatory, anti-diabetic, neuroprotective, gastroprotective, immunomodulatory, and anti-cancer effects. Most studies have focused on anti-oxidation, inflammation, diabetic, and cancers using both in vitro and in vivo approaches. Mechanisms underlying anti-cancer properties of ARC are apoptosis induction, cell cycle arrest, and the inhibition of p21-activated kinase 1 (PAK1), a protein characterized in many human diseases/disorders including COVID-19 infection. Therefore, further pre-clinical and clinical studies with ARC are necessary to explore its potential as intervention for a wide variety of diseases including the recent pandemic coronaviral infection. This review summarizes the comprehensive data on the pharmacological effects of ARC and could be a guideline for its future study and therapeutic usage.
Collapse
Affiliation(s)
- Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rashiduzzaman Emran
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; Department of Agricultural Extension (DAE), Khamarbari, Farmgate, Dhaka 1215, Bangladesh
| | - Patricia Rozario
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Diana N Obanda
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Camacho SA, Kobal MB, Almeida AM, Toledo KA, Oliveira ON, Aoki PHB. Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells. Colloids Surf B Biointerfaces 2020; 194:111189. [PMID: 32580142 DOI: 10.1016/j.colsurfb.2020.111189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Metallic nanoparticles are promising agents for photothermal cancer therapy (PTT) owing to their photostability and efficient light-to-heat conversion, but their possible aggregation remains an issue. In this paper, we report on the photoinduced heating of gold shell-isolated nanoparticles (AuSHINs) in in vitro experiments to kill human oropharyngeal (HEp-2) and breast (BT-474 and MCF-7) carcinoma cells, with cell viability reducing below 50 % with 2.2 × 1012 AuSHINs/mL and 6 h of incubation. This toxicity to cancer cells is significantly higher than in previous works with gold nanoparticles. Considering the AuSHINs dimensions we hypothesize that cell uptake is not straightforward, and the mechanism of action involves accumulation on phospholipid membranes as the PTT target for photoinduced heating and subsequent generation of reactive oxygen species (ROS). Using Langmuir monolayers as simplified membrane models, we confirmed that AuSHINs have a larger effect on 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), believed to represent cancer cell membranes, than on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) taken as representative of healthy eukaryotic cells. In particular, data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) revealed an increased conformational order of DOPS tails due to the stronger adsorption of AuSHINs. Furthermore, light irradiation reduced the stability of AuSHINs containing DOPC and DOPS monolayers owing to oxidative reactions triggered by ROS upon photoinduced heating. Compared to DOPC, DOPS lost nearly twice as much material to the subphase, which is consistent with a higher rate of ROS formation in the vicinity of the DOPS monolayer.
Collapse
Affiliation(s)
- Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil; São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil.
| |
Collapse
|