1
|
Firuzeh M, Labbaf S, Enayati MH, Dinari M, Mirhaj M. Enhanced wound healing with a bilayered multifunctional quaternized chitosan-dextran-curcumin construct. Carbohydr Polym 2025; 352:123195. [PMID: 39843097 DOI: 10.1016/j.carbpol.2024.123195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
This study introduces a novel bilayer wound dressing that integrates a quaternized chitosan-polyacrylic acid (QCs-PAA) sponge as the top layer with electrospun nanofibers containing curcumin as the bottom layer. For the first time, QCs and PAA were combined in an 80:20 ratio through freeze-drying to form a porous sponge layer with ideal structural properties, including 83 ± 6 % porosity and pore diameters of 290 ± 12.5 μm. For the bottom layer, five groups of nanofibers containing PAA, dextran, and curcumin were electrospun onto the porous sponge. All wound dressings were non-toxic and exhibited exceptional antibacterial activity against S. aureus and E. coli. All groups, particularly the QP/PD0.25Cur bilayer dressing, showed significant HaCaT cell adhesion. Angiogenesis assays confirmed a remarkable increase in blood vessel number and thickness in samples containing 0.25 w/w% curcumin, with vascular density increasing from 0.32 in the single-layer sponge to 0.54 in the QP/PD0.25Cur sample, representing a 68 % enhancement. In vivo studies demonstrated that within 14 days, wound healing was accelerated with the QP/PD0.25Cur bilayer dressing, achieving 96 % closure compared to other groups. The findings revealed that all fabricated bilayer sponge-nanofiber wound dressings, particularly the 0.25 w/w% curcumin sample, can be a suitable candidate for wound management.
Collapse
Affiliation(s)
- Mahboubeh Firuzeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Hossein Enayati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
2
|
Li BY, Lin TY, Lai YJ, Chiu TH, Yeh YC. Engineering Multiresponsive Alginate/PNIPAM/Carbon Nanotube Nanocomposite Hydrogels as On-Demand Drug Delivery Platforms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407420. [PMID: 39955748 DOI: 10.1002/smll.202407420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Second near-infrared (NIR-II) responsive hydrogels have shown significant potential in biomedical applications due to their excellent remote actuation property and the high tissue penetrations of the NIR-II light. Nevertheless, hydrogels with a single NIR-II light response may not meet the diverse requirements and complex conditions of clinical applications. Here, a novel multi-responsive nanocomposite hydrogel with enhanced suitability for controlled drug release is developed. This nanocomposite hydrogel is constructed by combining alginate dialdehyde (ADA), polyethyleneimine (PEI), poly(N-isopropylacrylamide) (PNIPAM), and phenylboronic acid-modified polyethyleneimine (PBA-PEI) functionalized multi-walled carbon nanotubes (PP-CNT) through the formation of dynamic covalent bonds (i.e., imine bonds and boronate ester bonds), forming ADA/PEI/PNIPAM/PP-CNT (APN/PP-CNT) hydrogel. PNIPAM is incorporated into the hydrogel network to facilitate drug release triggered by its aggregation when subjected to the high temperatures produced by NIR-II light irradiation. The dynamic covalent bonds and CNT in the network provide the APN/PP-CNT nanocomposite hydrogels with responsiveness to multiple stimuli, including pH, hydrogen peroxide, temperature, and NIR-II light. The APN/PP-CNT nanocomposite hydrogel performs effective NIR-II light responsiveness in both in vitro and in vivo drug release, highlighting its potential as a promising drug delivery platform.
Collapse
Affiliation(s)
- Bo-Yan Li
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tung-Yi Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung branch, and Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yi-Jhen Lai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Chen W, Zhao Z, Du Y, Ouyang S, Lin M, Li F, Tang H, Luo H, Zhang K, Zheng H. Octopus-inspired flocculant for oily wastewater decontamination: Hydrophilic-hydrophobic convertibility and auto-separation characters. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136396. [PMID: 39504775 DOI: 10.1016/j.jhazmat.2024.136396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/12/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Unilateral hydrophobic flocculant and unsatisfactory floc separation constrained the efficacious purification of oil-containing wastewater. Illumined by the hunting behavior of mimic octopus, a biomimetic flocculant (CNSDA) with temperature-sensitive chains (color pouch) and hollow silica cores (mantle) was manufactured to derive hydrophilic-hydrophobic convertibility and auto-separation capabilities. Physical-chemical information of CNSDA was elucidated through characterization analysis. The flocculation behaviors of temperature-sensitive chains and hollow silica cores were evaluated by flocculation experiments. Results indicated that the configuration of CNSDA molecular chains varied from extension to constriction and revealed hydrophobicity as the temperature crossed 29.6 ℃. Compared with 20 ℃, the flocculation efficiencies rocketed at 40 ℃ by CNSDA, and excess flocculants were adsorbed by as-formed flocs through nonpolar interactions (the residual was low to 2.27 % at 160 mg/L). Concomitantly, the contracted molecular chains were contributed to generating dense flocs with low moisture content that flocked into large ones and expedited the solid-liquid separation process (60 % shorter than cationic polyacrylamide) with the auxiliary of low-density cores. The hydrophobic adsorption mechanism actuated by temperature-sensitive character was the decisive factor for high-efficiency flocculation. This study can provide meaningful references for the conception and exploitation of oily wastewater disposal agents.
Collapse
Affiliation(s)
- Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu 611830, China.
| | - Zhihan Zhao
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China
| | - Yuhan Du
- College of Economics, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuohao Ouyang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China
| | - Mengyi Lin
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China
| | - Fengya Li
- Sichuan Ya'an Ecological Environment Monitoring Center Station, China
| | - Hanwei Tang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu 611830, China
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu 611830, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
4
|
Shu Q, Yang F, Lin Z, Yang L, Wang Z, Ye D, Dong Z, Huang P, Wang W. Molecular understanding of the self-assembly of an N-isopropylacrylamide delivery system for the loading and temperature-dependent release of curcumin. Commun Chem 2024; 7:163. [PMID: 39080473 PMCID: PMC11289375 DOI: 10.1038/s42004-024-01249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Global changes and drug abuse are forcing humanity to face various disease problems, and alternative therapies with safe natural substances have important research value. This paper combines various techniques in quantum chemical calculations and molecular simulations to provide molecular-level insight into the dynamics of the self-assembly of N-isopropylacrylamide (NIPAM) for loading curcumin (CUR). The results indicate that increasing the chain length of NIPAM molecules reduces their efficiency in encapsulating and locking CUR, and electrostatic interactions and van der Waals interactions are the main driving forces behind the evolution of system configurations in these processes. The isopropyl groups of NIPAM and the two phenolic ring planes of CUR are the main contact areas for the interaction between the two types of molecules. The thermosensitive effect of NIPAM can alter the distribution of isopropyl groups in NIPAM molecules around CUR. As a result, when the temperature rises from ambient temperature (300 K) to human characteristic temperature (310 K), the NIPAM-CUR interactions and radial distribution functions suggest that body temperature is more suitable for drug release. Our findings offer a vital theoretical foundation and practical guidance for researchers to develop temperature-sensitive drug delivery systems tailored for CUR, addressing its clinical application bottleneck.
Collapse
Affiliation(s)
- Qijiang Shu
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- Yunnan Traditional Chinese Medicine Prevention and Treatment Engineering Research Center, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| | - Fuhua Yang
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Zedong Lin
- School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, Zhejiang, China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, Guangdong, China
| | - Linjing Yang
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Zhan Wang
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Donghai Ye
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Zhi Dong
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Pengru Huang
- Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science & Engineering, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Wenping Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| |
Collapse
|
5
|
Chen K, Li Y, Li Y, Tan Y, Liu Y, Pan W, Tan G. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. J Nanobiotechnology 2023; 21:237. [PMID: 37488582 PMCID: PMC10364421 DOI: 10.1186/s12951-023-01987-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
The stimuli-responsive nanofibers prepared by electrospinning have become an ideal stimuli-responsive material due to their large specific surface area and porosity, which can respond extremely quickly to external environmental incitement. As an intelligent drug delivery platform, stimuli-responsive nanofibers can efficiently load drugs and then be stimulated by specific conditions (light, temperature, magnetic field, ultrasound, pH or ROS, etc.) to achieve slow, on-demand or targeted release, showing great potential in areas such as drug delivery, tumor therapy, wound dressing, and tissue engineering. Therefore, this paper reviews the recent trends of stimuli-responsive electrospun nanofibers as intelligent drug delivery platforms in the field of biomedicine.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yingshuo Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
6
|
Construction of a new dual-drug delivery system based on stimuli-responsive co-polymer functionalized D-mannose for chemotherapy of breast cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Nikolić L, Urošević M, Nikolić V, Gajić I, Dinić A, Miljković V, Rakić S, Đokić S, Kesić J, Ilić-Stojanović S, Nikolić G. The Formulation of Curcumin: 2-Hydroxypropyl-β-cyclodextrin Complex with Smart Hydrogel for Prolonged Release of Curcumin. Pharmaceutics 2023; 15:382. [PMID: 36839703 PMCID: PMC9967663 DOI: 10.3390/pharmaceutics15020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Curcumin comes from the plant species Curcuma longa and shows numerous pharmacological activities. There are numerous curcumin formulations with gels or cyclodextrins in order to increase its solubility and bioavailability. This paper presents the formulation of complex of curcumin with 2-hydroxypropyl-β-cyclodextrin in a thermosensitive hydrogel, based on N-isopropylmethacrylamide and N-isopropylacrylamide with ethylene glycol dimethacrylate as a crosslinker. The product was characterized by chemical methods and also by FTIR, HPLC, DSC, SEM, XRD. The results show that synthesis was successfully done. With an increase in the quantity of crosslinker in the hydrogels, the starting release and the release rate of curcumin from the formulation of the complex with hydrogels decreases. The release rate of curcumin from the gel complex formulation is constant over time. It is possible to design a formulation that will release curcumin for more than 60 days. In order to determine the mechanism and kinetics of curcumin release, various mathematical models were applied by using the DDSolver package for Microsoft Excel application. The Korsmeyer-Peppas model best describes the release of curcumin from the gel formulation of the complex, while the values for the diffusion exponent (0.063-0.074) shows that mechanism of the release rate is based on diffusion.
Collapse
Affiliation(s)
- Ljubiša Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Maja Urošević
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Vesna Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Ivana Gajić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Ana Dinić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Vojkan Miljković
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Srđan Rakić
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
| | - Sanja Đokić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jelena Kesić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | | | - Goran Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| |
Collapse
|
8
|
Williams L, Hatton FL, Willcock H, Mele E. Electrospinning of Stimuli‐Responsive Polymers for Controlled Drug Delivery: pH‐ and Temperature‐Driven Release. Biotechnol Bioeng 2022; 119:1177-1188. [DOI: 10.1002/bit.28043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- L. Williams
- Department of Materials Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - F. L. Hatton
- Department of Materials Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - H. Willcock
- Department of Materials Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - E. Mele
- Department of Materials Loughborough University Epinal Way, Loughborough LE11 3TU UK
| |
Collapse
|
9
|
Liguori A, Pandini S, Rinoldi C, Zaccheroni N, Pierini F, Focarete ML, Gualandi C. Thermo-active Smart Electrospun Nanofibers. Macromol Rapid Commun 2021; 43:e2100694. [PMID: 34962002 DOI: 10.1002/marc.202100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Indexed: 11/10/2022]
Abstract
The recent burst of research on smart materials is a clear evidence of the growing interest of the scientific community, industry, and society in the field. The exploitation of the great potential of stimuli-responsive materials for sensing, actuation, logic, and control applications is favored and supported by new manufacturing technologies, such as electrospinning, that allows to endow smart materials with micro- and nano-structuration, thus opening up additional and unprecedented prospects. In this wide and lively scenario, this article systematically reviews the current advances in the development of thermo-active electrospun fibers and textiles, sorting them, according to their response to the thermal stimulus. Hence, several platforms including thermo-responsive systems, shape memory polymers, thermo-optically responsive systems, phase change materials, thermoelectric materials, and pyroelectric materials, have been described and critically discussed. The difference in active species and outputs of the aforementioned categories has been highlighted, evidencing the transversal nature of temperature stimulus. Moreover, the potential of novel thermo-active materials has been pointed out, revealing how their development could take to utmost interesting achievements. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Stefano Pandini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Chiara Rinoldi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Filippo Pierini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| |
Collapse
|
10
|
3D reconstruction of bias effects on porosity, alignment and mesoscale structure in electrospun tubular polycaprolactone. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Nikolaou M, Avraam K, Kolokithas-Ntoukas A, Bakandritsos A, Lizal F, Misik O, Maly M, Jedelsky J, Savva I, Balanean F, Krasia-Christoforou T. Superparamagnetic electrospun microrods for magnetically-guided pulmonary drug delivery with magnetic heating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112117. [PMID: 34082934 DOI: 10.1016/j.msec.2021.112117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Controlled pulmonary drug delivery systems employing non-spherical particles as drug carriers attract considerable attention nowadays. Such anisotropic morphologies may travel deeper into the lung airways, thus enabling the efficient accumulation of therapeutic compounds at the point of interest and subsequently their sustained release. This study focuses on the fabrication of electrospun superparamagnetic polymer-based biodegradable microrods consisting of poly(l-lactide) (PLLA), polyethylene oxide (PEO) and oleic acid-coated magnetite nanoparticles (OA·Fe3O4). The production of magnetite-free (0% wt. OA·Fe3O4) and magnetite-loaded (50% and 70% wt. Fe3O4) microrods was realized upon subjecting the as-prepared electrospun fibers to UV irradiation, followed by sonication. Moreover, drug-loaded microrods were fabricated incorporating methyl 4-hydroxybenzoate (MHB) as a model pharmaceutical compound and the drug release profile from both, the drug-loaded membranes and the corresponding microrods was investigated in aqueous media. In addition, the magnetic properties of the produced materials were exploited for remote induction of hyperthermia under AC magnetic field, while the possibility to reduce transport losses and enhance the targeted delivery to lower airways by manipulation of the airborne microrods by DC magnetic field was also demonstrated.
Collapse
Affiliation(s)
- Maria Nikolaou
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P. O. Box 20537, 1678 Nicosia, Cyprus
| | - Kyriakos Avraam
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P. O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, CATRIN, Palacký University, Olomouc, Czech Republic; Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Frantisek Lizal
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno 616 00, Czech Republic
| | - Ondrej Misik
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno 616 00, Czech Republic
| | - Milan Maly
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno 616 00, Czech Republic
| | - Jan Jedelsky
- Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technicka 2896/2, Brno 616 00, Czech Republic
| | - Ioanna Savva
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P. O. Box 20537, 1678 Nicosia, Cyprus
| | - Florica Balanean
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania
| | - Theodora Krasia-Christoforou
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P. O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
12
|
Wang S, Liu H, Wu D, Wang X. Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery. J Colloid Interface Sci 2021; 583:470-486. [DOI: 10.1016/j.jcis.2020.09.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
|
13
|
Mahdieh Z, Holian A. Electrospun fibers loaded with ball‐milled poly(n‐isopropylacrylamide) microgel particles for smart delivery applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zahra Mahdieh
- Materials Science Program, Department of Biomedical and Pharmaceutical SciencesUniversity of Montana Missoula Montana USA
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical SciencesUniversity of Montana Missoula Montana USA
| |
Collapse
|