1
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
2
|
Fakudze N, Abrahamse H, George B. Nanoparticles improved pheophorbide-a mediated photodynamic therapy for cancer. Lasers Med Sci 2025; 40:78. [PMID: 39918741 PMCID: PMC11805798 DOI: 10.1007/s10103-025-04320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025]
Abstract
The increased cancer incidence and mortality rates have made researchers continue to explore different types of effective and less toxic cancer therapies. Photodynamic therapy (PDT) is an alternative cancer treatment modality with reduced side effects. It is comprised of three components, a photosensitizer, molecular oxygen and light. Researchers have been exploring third generation photosensitizers that overcome existing photosensitizer limitations such as hydrophobicity, accurate targeting and photosensitivity. Pheophorbide-a is a chlorophyll product currently being explored in a number of in vitro, in vivo and in silico studies as an ideal photosensitizer for breast, prostate, lung, oral squamous cell carcinoma, gastric, osteosarcoma and cervical cancers. These in vitro, in vivo and in silico studies have shown the probable cell death pathways in different cell lines and how advancement in using nanocarriers has improved cancer cell killing effect after pheophorbide-a mediated PDT. The pharmacokinetics have elaborated on the biodistribution and tissue disposition of pheophorbide-a in this review. In summary, we offer our viewpoint on PDT in the context of cancer management, and we believe that this article will shed new light on the role of pheophorbide-a in PDT for cancer.
Collapse
|
3
|
Park J, Zhang J, Kim B. Development of optical microneedle-lens array for photodynamic therapy. Biomed Microdevices 2025; 27:6. [PMID: 39873932 PMCID: PMC11775042 DOI: 10.1007/s10544-025-00735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use. One of the biggest challenges is the limited penetration of light owing to scattering, reflection, and absorption of light inside the skin layers. In addition, accidental light exposure of the target area causes additional cellular damage, which causes unexpected complications. To solve these issues, we introduced an optical microneedle-lens array (OMLA) to improve the efficiency and safety of PDT treatment. We designed and fabricated a novel optical microneedle-lens array with controlled dimensions to optimize light transmission. In addition, PS was coated uniformly over the tips of the OMLA using the dip coating method. Finally, we confirmed that the PS coated on the OMLA was released into the target area and subsequently generated radical oxygen by light irradiation. We expect that our proposed OMLA for PDT treatment can realize a new light-transmission platform optimized for PDT with targeting various types of skin cancers.
Collapse
Affiliation(s)
- Jongho Park
- Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan
| | - Jingzong Zhang
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Bunkyo City, 113-8656, Tokyo, Japan
| | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.
| |
Collapse
|
4
|
Hunt N, Kestens V, Rasmussen K, Badetti E, Soeteman-Hernández LG, Oomen AG, Peijnenburg W, Hristozov D, Rauscher H. Regulatory preparedness for multicomponent nanomaterials: Current state, gaps and challenges of REACH. NANOIMPACT 2025; 37:100538. [PMID: 39708954 DOI: 10.1016/j.impact.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In 2018 the European Commission adopted revisions to the Annexes of Regulation (EC) No 1907/2006 concerning registration, evaluation, authorisation and restriction of chemicals (REACH) to introduce nanomaterial-specific clarifications and provisions. Multicomponent nanomaterial (MCNM) is a non-regulatory term that has been used in recent EU-funded projects to describe nanomaterials with a complex structure and/or composition and which are expected to be increasingly used in products in the near future. This paper examines the regulatory preparedness of REACH, and its revised Annexes, for MCNMs. Several situations have been identified where there is potential confusion and uncertainty around how regulatory definitions used in REACH should be applied to MCNMs. If a MCNM cannot be identified as falling within a specific definition, understanding the regulatory obligations that apply to it is very difficult. Examples of these grey areas include how the term "surface functionalisation or modification" applies when a chemical is physisorbed to the surface of a nanoform, and the identity of the substance that should be registered when the modification takes it outside the definition of a nanoform. We conclude that the regulatory preparedness can be improved by amending the REACH guidance on information requirements for nanoforms and revising the definition of "nanoform" in line with the updated EC Recommendation on the definition of nanomaterial.
Collapse
Affiliation(s)
- Neil Hunt
- YORDAS Group, Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | - Vikram Kestens
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE) 30172, Italy
| | | | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
5
|
Liu S, Jiang Y, Zhang Y, Lv K, Zhu J, Liu M, Xu H, Jiao G, Yang W, Sun G, Ma D. Three-arm polyrotaxanes with multidirectional molecular motions as the nanocarrier for nitric oxide-enhanced photodynamic therapy against bacterial biofilms in septic arthritis. J Nanobiotechnology 2024; 22:727. [PMID: 39574125 PMCID: PMC11583641 DOI: 10.1186/s12951-024-02953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Bacterial biofilms are one of the major contributors to the refractoriness of septic arthritis. Although nitric oxide (NO)-enhanced photodynamic (PDT) therapy has been involved in biofilm eradication, the anti-biofilm efficacy is usually hindered by the short half-life and limited diffusion distance of active molecules. Herein, we report a three-arm structure using the photosensitive core chlorin e6 to integrate three α-cyclodextrin (α-CD) polyrotaxane chains as the supramolecular nanocarrier of NO-enhanced PDT therapy, in which NO was loaded on the cationic rings (α-CDs). Beneficial from the enhanced permeability of the nanocarrier due to the collective act on biofilms by the molecular motions (slide and rotation of rings) of three chains in different directions, NO capable of inducing biofilm dispersal and reactive oxygen species were efficiently delivered deep inside biofilms under 660 nm laser irradiation, and reactive nitrogen species with stronger bactericidal ability was produced in-situ, further accomplishing bacteria elimination inside biofilms. In-vivo therapeutic performance of this platform was demonstrated in a rat septic arthritis model by eliminating the methicillin-resistant Staphylococcus aureus infection, and potentiating the immune microenvironment regulation and bone loss inhibition, also providing a promising strategy to numerous obstinate clinical infections caused by biofilms.
Collapse
Affiliation(s)
- Shixin Liu
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Yuanfang Jiang
- Department of Nuclear Medicine, PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yu Zhang
- Department of Ultrasound Medicine, Zhucheng People's Hospital, Zhucheng, 262200, China
| | - Kai Lv
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Jiaxin Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Mei Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Hao Xu
- Department of Nuclear Medicine, PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Genlong Jiao
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan), Dongguan, 523573, China
| | - Wanyong Yang
- The Fifth Affiliated Hospital, Jinan University, Heyuan, 517000, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Dong Ma
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Li G, Wang C, Jin B, Sun T, Sun K, Wang S, Fan Z. Advances in smart nanotechnology-supported photodynamic therapy for cancer. Cell Death Discov 2024; 10:466. [PMID: 39528439 PMCID: PMC11554787 DOI: 10.1038/s41420-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer has emerged as a formidable challenge in the 21st century, impacting society, public health, and the economy. Conventional cancer treatments often exhibit limited efficacy and considerable side effects, particularly in managing the advanced stages of the disease. Photodynamic therapy (PDT), a contemporary non-invasive therapeutic approach, employs photosensitizers (PS) in conjunction with precise light wavelengths to selectively target diseased tissues, inducing the generation of reactive oxygen species and ultimately leading to cancer cell apoptosis. In contrast to conventional therapies, PDT presents a lower incidence of side effects and greater precision in targeting. The integration of intelligent nanotechnology into PDT has markedly improved its effectiveness, as evidenced by the remarkable synergistic antitumor effects observed with the utilization of multifunctional nanoplatforms in conjunction with PDT. This paper provides a concise overview of the principles underlying PS and PDT, while also delving into the utilization of nanomaterial-based PDT in the context of cancer treatment.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Dalian, China
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Binghui Jin
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Tao Sun
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Dalian, China
| | - Kang Sun
- Department of Digestive Endoscopy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China.
| |
Collapse
|
7
|
Nunes IPF, de Jesus RS, Almeida JA, Costa WLR, Malta M, Soares LGP, de Almeida PF, Pinheiro ALB. Evaluation of 1,9-Dimethyl-Methylene Blue nanoencapsulation using rhamnolipid nanoparticles to potentiate the Photodynamic Therapy technique in Candida albicans: In vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112943. [PMID: 38788534 DOI: 10.1016/j.jphotobiol.2024.112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
With the rapid development of nanotechnology, various functional nanomaterials have shown exciting potential in biomedical areas such as drug delivery, antitumor, and antibacterial therapy. These nanomaterials improve the stability and selectivity of loaded drugs, reduce drug-induced side effects, realize controlled and targeted drug release, and increase therapeutic efficacy. The increased resistance to antifungal microbicides in medical practice and their side effects stimulate interest in new therapies, such as Photodynamic Therapy (PDT), which do not generate resistance in microorganisms and effectively control the pathology. The present study aimed to evaluate, in vitro, the efficacy of photodynamic therapy on Candida albicans using 1,9-Dimethyl-Methylene Blue (DMMB) as photosensitizer, red LED (λ630), and nanoencapsulation of DMMB (RL-NPs/DMMB) using rhamnolipids produced by Pseudomonas aeruginosa to evaluate if there is better performance of DMMB + RL particles compared to DMMB alone via the characterization of DMMB + RL and colony forming count. The tests were carried out across six experimental groups (Control, DMMB, RL-NPs, RL-NPs/DMMB, PDT and PDT + RL-NPs/DMMB) using in the groups with nanoparticles, DMMB (750 ng/mL) encapsulated with rhamnolipids in a 1:1 ratio, the light source consisted of a prototype built with a set of red LEDs with an energy density of 20 J/cm2. The results showed that applying PDT combined with encapsulation (RL-NPs/DMMB) was a more practical approach to inhibit Candida albicans (2 log reduction) than conventional applications, with a possible clinical application protocol.
Collapse
Affiliation(s)
- Iago P F Nunes
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Romário S de Jesus
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Jeovana Amorim Almeida
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| | - Wellington L R Costa
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| | - Marcos Malta
- Laboratory of Biotechnology and Chemistry of Microorganisms, Institute of Chemistry, Federal University of Bahia, Rua Barão de Geremoabo, 147, Ondina, Salvador, Bahia CEP: 40.170-115, Brazil.
| | - Luiz G P Soares
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil
| | - Paulo F de Almeida
- Laboratory of Biotechnology and Ecology of Microorganisms, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA CEP:40110-100, Brazil
| | - Antônio L B Pinheiro
- Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA CEP: 40110-150, Brazil.
| |
Collapse
|
8
|
Kong F, He P, Jiang J, Zhu W, Lei Q. Spatiotemporally-controlled hydrophobic drug delivery via photosensitizer-driven assembly-disassembly for enhanced triple-negative breast cancer treatment. J Control Release 2024; 369:53-62. [PMID: 38513728 DOI: 10.1016/j.jconrel.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Therapeutic approaches for triple-negative breast cancer (TNBC) have been continuously advancing, but inadequate control over release behavior, insufficient tumor selectivity, and limited drug availability continue to impede therapeutic outcomes in nanodrug systems. In this study, we propose a general hydrophobic antineoplastic delivery system, termed spatiotemporally-controlled hydrophobic antineoplastic delivery system (SCHADS) for enhanced TNBC treatment. The key feature of SCHADS is the formation of metastable photosensitive-antineoplastic complexes (PACs) through the self-assembly of hydrophobic drugs driven by photosensitive molecules. With the further decoration of tumor-targeting peptides coupled with the EPR effect, the PACs tend to accumulate in the tumor site tremendously, promoting drug delivery efficiency. Meanwhile, the disassembly behavior of the metastable PACs could be driven by light on demand to achieve in situ drug release, thus promoting chemotherapeutics availability. Furthermore, the abundant ROS generated by the photosensitizer could effectively kill tumor cells, ultimately realizing an effective combination of photodynamic and chemotherapeutic therapy. As an exemplary presentation, chlorin e6 has been chosen to drive the formation of PACs with the system xc- inhibitor sorafenib. Compared with pure drug treatment, the PACs with the above-described preponderances exhibit superior therapeutic effects both in vitro and in vivo and circumvent the side effects due to off-target. By manipulating the laser irradiation, the PACs-treated cell death mechanism could be dynamically regulated, thus providing the potential to remedy intrinsic/acquired resistance of tumor. Collectively, this SCHADS achieves spatio-temporal control of the drug that greatly enhances the availability of anticarcinogen and realizes synergistic antitumor effect in TNBC treatment, even ultimately being extended to the treatment of other types of tumors.
Collapse
Affiliation(s)
- Fanhui Kong
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Peiying He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jiani Jiang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Qi Lei
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, PR China.
| |
Collapse
|
9
|
Dragicevic N, Predic-Atkinson J, Nikolic B, Pajovic SB, Ivkovic S, Adzic M. Nanocarriers in topical photodynamic therapy. Expert Opin Drug Deliv 2024; 21:279-307. [PMID: 38349540 DOI: 10.1080/17425247.2024.2318460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Photodynamic therapy (PDT) has gained significant attention due to its superiority over conventional treatments. In the context of skin cancers and nonmalignant skin diseases, topical application of photosensitizer formulations onto affected skin, followed by illumination, offers distinct advantages. Topical PDT simplifies therapy by providing easy access to the skin, increasing drug concentration within the target area, and confining residual photosensitivity to the treated skin. However, the effectiveness of topical PDT is often hindered by challenges such as limited skin penetration or photosensitizer instability. Additionally, the hypoxic tumor environment poses further limitations. Nanocarriers present a promising solution to address these challenges. AREAS COVERED The objective of this review is to comprehensively explore and highlight the role of various nanocarriers in advancing topical PDT for the treatment of skin diseases. The primary focus is to address the challenges associated with conventional topical PDT approaches and demonstrate how nanotechnology-based strategies can overcome these challenges, thereby improving the overall efficiency and efficacy of PDT. EXPERT OPINION Nanotechnology has revolutionized the field of PDT, offering innovative tools to combat the unfavorable features of photosensitizers and hurdles in PDT. Nanocarriers enhance skin penetration and stability of photosensitizers, provide controlled drug release, reduce needed dose, increase production of reactive oxygen species, while reducing side effects, thereby improving PDT effectiveness.
Collapse
Affiliation(s)
- Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | | | - Bojan Nikolic
- Faculty of Health and Business studies, Singidunum University, Valjevo, Serbia
| | - Snezana B Pajovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Ivkovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Li S, Meng X, Peng B, Huang J, Liu J, Xiao H, Ma L, Liu Y, Tang J. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2024; 174:26-48. [PMID: 38008198 DOI: 10.1016/j.actbio.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Despite significant advances in medical technology and antitumour treatments, the diagnosis and treatment of tumours have undergone remarkable transformations. Noninvasive phototherapy methods, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have gained significant interest in antitumour medicine. However, traditional photosensitisers or photothermal agents face challenges like immune system recognition, rapid clearance from the bloodstream, limited tumour accumulation, and phototoxicity concerns. Researchers combine photosensitisers or photothermal agents with natural cell membranes to overcome these obstacles to create a nano biomimetic therapeutic platform. When used to coat nanoparticles, red blood cells, platelets, cancer cells, macrophages, lymphocytes, and bacterial outer membranes could provide prolonged circulation, tumour targeting, immune stimulation, or antigenicity. This article covers the principles of cellular membrane biomimetic nanotechnology and phototherapy, along with recent advancements in applying nano biomimetic technology to PDT, PTT, PCT, and combined diagnosis and treatment. Furthermore, the challenges and issues of using nano biomimetic nanoparticles in phototherapy are discussed. STATEMENT OF SIGNIFICANCE: Currently, there has been significant progress in the field of cell membrane biomimetic technology. Researchers are exploring its potential application in tumor diagnosis and treatment through phototherapy. Scholars have conducted extensive research on combining cell membrane technology and phototherapy in anticancer diagnosis and treatment. This review aims to highlight the mechanisms of phototherapy and the latest advancements in single phototherapy (PTT, PDT) and combination phototherapy (PCT, PRT, and PIT), as well as diagnostic approaches. The review provides an overview of various cell membrane technologies, including RBC membranes, platelet membranes, macrophage cell membranes, tumour cell membranes, bacterial membranes, hybrid membranes, and their potential for anticancer applications under phototherapy. Lastly, the review discusses the challenges and future directions in this field.
Collapse
Affiliation(s)
- Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Bo Peng
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hang Xiao
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Li Ma
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
11
|
Zeng S, Chen J, Gao R, Chen R, Xue Q, Ren Y, Liu L, Tang C, Hu H, Zeng N, Wen S, Zhang H, Liu C, Fang C. NIR-II Photoacoustic Imaging-Guided Oxygen Delivery and Controlled Release Improves Photodynamic Therapy for Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308780. [PMID: 37983859 DOI: 10.1002/adma.202308780] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Hypoxia, a prominent hallmark of hepatocellular carcinoma (HCC), undermines curative outcomes, elevates recurrence rates, and fosters metastasis, particularly during photodynamic therapy (PDT) in clinical settings. Studies indicate that alleviating tumor hypoxia enhances PDT efficacy. However, persistent challenges, including suboptimal oxygen delivery efficiency and absence of real-time feedback on blood oxygen fluctuations during PDT, considerably impede therapeutic efficacy in tumor treatment. This study addresses these issues using near-infrared-II (NIR-II) photoacoustic (PA) imaging for tumor-targeted oxygen delivery and controlled release. For this purpose, a biomimetic oxygen delivery system designated BLICP@O2 is developed, which utilizes hybrid tumor cell membranes and thermosensitive liposomes as oxygen carriers, incorporating the NIR-II dye IR1048, photosensitizer chlorin e6 (Ce6), and perfluorohexane. Upon sequential irradiation at 1064 and 690 nm, BLICP@O2 exhibits significant photothermal and photodynamic effects. Photothermal heating triggers oxygen release, enhancing the photodynamic effect of Ce6. Blood oxygen changes during PDT are tracked by multispectral PA imaging. Enhanced PDT efficacy, mediated by hypoxia relief, is convincingly demonstrated both in vitro and in vivo. This work presents an imaging-guided, dual-wavelength programmed cascaded treatment strategy for tumor-targeted oxygen delivery and controlled release, with real-time efficacy monitoring using PA imaging, offering valuable insights for overcoming challenges in PDT-based cancer therapy.
Collapse
Affiliation(s)
- Silue Zeng
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rongkang Gao
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rui Chen
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qiang Xue
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Ultrasound Shenzhen People's Hospital, The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liangjian Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chuanyu Tang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Haoyu Hu
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Ning Zeng
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Sai Wen
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Hai Zhang
- Department of Ultrasound Shenzhen People's Hospital, The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| |
Collapse
|
12
|
Tyubaeva PM, Gasparyan KG, Romanov RR, Kolesnikov EA, Martirosyan LY, Larkina EA, Tyubaev MA. Biomimetic Materials Based on Poly-3-hydroxybutyrate and Chlorophyll Derivatives. Polymers (Basel) 2023; 16:101. [PMID: 38201766 PMCID: PMC10780539 DOI: 10.3390/polym16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Electrospinning of biomimetic materials is of particular interest due to the possibility of producing flexible layers with highly developed surfaces from a wide range of polymers. Additionally, electrospinning is characterized by a high simplicity of implementation and the ability to modify the produced fibrous materials, which resemble structures found in living organisms. This study explores new electrospun materials based on polyhydroxyalkanoates, specifically poly-3-hydroxybutyrate, modified with chlorophyll derivatives. The research investigates the impact of chlorophyll derivatives on the morphology, supramolecular structure, and key properties of nonwoven materials. The obtained results are of interest for the development of new flexible materials with low concentrations of chlorophyll derivatives.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Kristina G. Gasparyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Roman R. Romanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Evgeny A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology (MISIS), 119991 Moscow, Russia;
| | - Levon Y. Martirosyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
| | - Ekaterina A. Larkina
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Mikhail A. Tyubaev
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| |
Collapse
|
13
|
Dai X, Du Y, Li Y, Yan F. Nanomaterials-based precision sonodynamic therapy enhancing immune checkpoint blockade: A promising strategy targeting solid tumor. Mater Today Bio 2023; 23:100796. [PMID: 37766898 PMCID: PMC10520454 DOI: 10.1016/j.mtbio.2023.100796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Burgeoning is an evolution from conventional photodynamic therapy (PDT). Thus, sonodynamic therapy (SDT) regulated by nanoparticles (NPs) possesses multiple advantages, including stronger penetration ability, better biological safety, and not reactive oxygen species (ROS)-dependent tumor-killing effect. However, the limitation to tumor inhibition instead of shrinkage and the incapability of eliminating metastatic tumors hinder the clinical potential for SDT. Fortunately, immune checkpoint blockade (ICB) can revive immunological function and induce a long-term immune memory against tumor rechallenges. Hence, synergizing NPs-based SDT with ICB can provide a promising therapeutic outcome for solid tumors. Herein, we briefly reviewed the progress in NPs-based SDT and ICB therapy. We highlighted the synergistic anti-tumor mechanisms and summarized the representative preclinical trials on SDT-assisted immunotherapy. Compared to other reviews, we provided comprehensive and unique perspectives on the innovative sonosensitizers in each trial. Moreover, we also discussed the current challenges and future corresponding solutions.
Collapse
Affiliation(s)
- Xinlun Dai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Doan VHM, Vu DD, Mondal S, Vo TMT, Ly CD, Nguyen VT, Park S, Choi J, Nguyen TP, Lee B, Oh J. Yb-Gd Codoped Hydroxyapatite as a Potential Contrast Agent for Tumor-Targeted Biomedical Applications. ACS Biomater Sci Eng 2023; 9:4607-4618. [PMID: 37452737 DOI: 10.1021/acsbiomaterials.3c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.
Collapse
Affiliation(s)
- Vu Hoang Minh Doan
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Dinh Dat Vu
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Mai Thien Vo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thanh Phuoc Nguyen
- Department of Mechatronics, Cao Thang Technical College, Ho Chi Minh City 700000, Vietnam
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
- Ohlabs Corp., Busan 48513, Republic of Korea
| |
Collapse
|
15
|
Lu H, Niu L, Yu L, Jin K, Zhang J, Liu J, Zhu X, Wu Y, Zhang Y. Cancer phototherapy with nano-bacteria biohybrids. J Control Release 2023; 360:133-148. [PMID: 37315693 DOI: 10.1016/j.jconrel.2023.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The utilization of light for therapeutic interventions, also known as phototherapy, has been extensively employed in the treatment of a wide range of illnesses, including cancer. Despite the benefits of its non-invasive nature, phototherapy still faces challenges pertaining to the delivery of phototherapeutic agents, phototoxicity, and light delivery. The incorporation of nanomaterials and bacteria in phototherapy has emerged as a promising approach that leverages the unique properties of each component. The resulting nano-bacteria biohybrids exhibit enhanced therapeutic efficacy when compared to either component individually. In this review, we summarize and discuss the various strategies for assembling nano-bacteria biohybrids and their applications in phototherapy. We provide a comprehensive overview of the properties and functionalities of nanomaterials and cells in the biohybrids. Notably, we highlight the roles of bacteria beyond their function as drug vehicles, particularly their capacity to produce bioactive molecules. Despite being in its early stage, the integration of photoelectric nanomaterials and genetically engineered bacteria holds promise as an effective biosystem for antitumor phototherapy. The utilization of nano-bacteria biohybrids in phototherapy is a promising avenue for future investigation, with the potential to enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Luqi Niu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.
| | - Yong Zhang
- Department of Biomedical Engineering, National University of Singapore, 119077, Singapore; National University of Singapore Research Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
16
|
Li Y, Gao Y, Pan Z, Jia F, Xu C, Cui X, Wang X, Wu Y. Fabrication of Poly Dopamine@poly (Lactic Acid-Co-Glycolic Acid) Nanohybrids for Cancer Therapy via a Triple Collaboration Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1447. [PMID: 37176991 PMCID: PMC10180254 DOI: 10.3390/nano13091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Breast cancer is a common malignant tumor among women and has a higher risk of early recurrence, distant metastasis, and poor prognosis. Systemic chemotherapy is still the most widely used treatment for patients with breast cancer. However, unavoidable side effects and acquired resistance severely limit the efficacy of treatment. The multi-drug combination strategy has been identified as an effective tumor therapy pattern. In this investigation, we demonstrated a triple collaboration strategy of incorporating the chemotherapeutic drug doxorubicin (DOX) and anti-angiogenesis agent combretastatin A4 (CA4) into poly(lactic-co-glycolic acid) (PLGA)-based co-delivery nanohybrids (PLGA/DC NPs) via an improved double emulsion technology, and then a polydopamine (PDA) was modified on the PLGA/DC NPs' surface through the self-assembly method for photothermal therapy. In the drug-loaded PDA co-delivery nanohybrids (PDA@PLGA/DC NPs), DOX and CA4 synergistically induced tumor cell apoptosis by interfering with DNA replication and inhibiting tumor angiogenesis, respectively. The controlled release of DOX and CA4-loaded PDA@PLGA NPs in the tumor region was pH dependent and triggered by the hyperthermia generated via laser irradiation. Both in vitro and in vivo studies demonstrated that PDA@PLGA/DC NPs enhanced cytotoxicity under laser irradiation, and combined therapeutic effects were obtained when DOX, CA4, and PDA were integrated into a single nanoplatform. Taken together, the present study demonstrates a nanoplatform for combined DOX, CA4, and photothermal therapy, providing a potentially promising strategy for the synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Yunhao Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China;
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yujuan Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenlu Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, China; (Y.G.); (Z.P.); (F.J.); (C.X.); (X.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Tao H, Zhang H, Xu D, Yan G, Wu Y, Zhang G, Zeng Q, Wang X. A chlorin e6 derivative-mediated photodynamic therapy inhibits cutaneous squamous cell carcinoma cell proliferation via Akt/mTOR signaling pathway. Photodiagnosis Photodyn Ther 2023; 42:103332. [PMID: 36796744 DOI: 10.1016/j.pdpdt.2023.103332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Although most cutaneous squamous cell carcinoma (cSCC) cases are generally nonlethal and manageable with surgical excision, there ares till significant hazards for patients who are ineligible for surgical resection. We sought to find a suitable and effective treatment for cSCC. METHODS We modified chlorin e6 by adding a hydrogen chain with a six-carbon ring to the benzene ring and named this new photosensitizer as STBF. We first investigated the fluorescence characteristics, cellular uptake of STBF and subcellular localization. Next, cell viability was detected by CCK-8 assay and the TUNEL staining was performed. Akt/mTOR-related proteins were examined by western blot. RESULTS STBF-photodynamic therapy (PDT) inhibits cSCC cells viability in a light dose dependent manner. The antitumor mechanism of STBF-PDT might be due to the suppression of the Akt/mTOR signaling pathway. Further animal investigation determined that STBF-PDT led to a marked reduction in tumor growth. CONCLUSIONS Our results suggest that STBF-PDT exerts significant therapeutic effects in cSCC. Thus, STBF-PDT is expected to be a promising method for the treatment of cSCC and the photosensitizer STBF may be destined for a wider range of applications in photodynamic therapy.
Collapse
Affiliation(s)
- Hui Tao
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai, 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; The Fifth Clinical Medical College of Anhui Medical University
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Detian Xu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yuhao Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiuli Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai, 200443, China; Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; The Fifth Clinical Medical College of Anhui Medical University.
| |
Collapse
|
18
|
Souris JS, Leoni L, Zhang HJ, Pan A, Tanios E, Tsai HM, Balyasnikova IV, Bissonnette M, Chen CT. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:673. [PMID: 36839041 PMCID: PMC9962876 DOI: 10.3390/nano13040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.
Collapse
Affiliation(s)
- Jeffrey S. Souris
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Ariel Pan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Eve Tanios
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032656. [PMID: 36768975 PMCID: PMC9916860 DOI: 10.3390/ijms24032656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) holds great promise in cancer eradication due to its target selectivity, non-invasiveness, and low systemic toxicity. However, due to the hypoxic nature of many native tumors, PDT is frequently limited in its therapeutic effect. Additionally, oxygen consumption during PDT may exacerbate the tumor's hypoxic condition, which stimulates tumor proliferation, metastasis, and invasion, resulting in poor treatment outcomes. Therefore, various strategies have been developed to combat hypoxia in PDT, such as oxygen carriers, reactive oxygen supplements, and the modulation of tumor microenvironments. However, most PDT-related studies are still conducted on two-dimensional (2D) cell cultures, which fail to accurately reflect tissue complexity. Thus, three-dimensional (3D) cell cultures are ideal models for drug screening, disease simulation and targeted cancer therapy, since they accurately replicate the tumor tissue architecture and microenvironment. This review summarizes recent advances in the development of strategies to overcome tumor hypoxia for enhanced PDT efficiency, with a particular focus on nanoparticle-based photosensitizer (PS) delivery systems, as well as the advantages of 3D cell cultures.
Collapse
|
20
|
Jiang A, Guan X, He L, Guan X. Engineered elastin-like polypeptides: An efficient platform for enhanced cancer treatment. Front Pharmacol 2023; 13:1113079. [PMID: 36699056 PMCID: PMC9868590 DOI: 10.3389/fphar.2022.1113079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Drug delivery systems (DDSs) have recently gained widespread attention for improving drug loading and delivery efficiency in treating many cancers. Elastin-like polypeptides (ELPs) are synthetic peptides derived from a precursor of elastin (tropoelastin), reserving similar structural and physicochemical properties. ELPs have gained a variety of applications in tissue engineering and cancer therapy due to their excellent biocompatibility, complete degradability, temperature-responsive property, controllable sequence and length, and precisely tuned structure and function. ELPs-based drug delivery systems can improve the pharmacokinetics and biodistribution of therapeutic reagents, leading to enhanced antitumor efficacy. In this review, we summarize the recent application of ELPs in cancer treatment, focusing on the delivery of functional peptides, therapeutic proteins, small molecule drugs, and photosensitizers.
Collapse
Affiliation(s)
- Aiguo Jiang
- Department of Respiratory Medicine, Taizhou University Affiliated Wenling Hospital, Taizhou University, Taizhou, China
| | - Xinqiang Guan
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lianping He
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Xingang Guan
- Department of Respiratory Medicine, Taizhou University Affiliated Wenling Hospital, Taizhou University, Taizhou, China
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| |
Collapse
|
21
|
Ballestri M, Marras E, Caruso E, Bolognese F, Malacarne MC, Martella E, Tubertini M, Gariboldi MB, Varchi G. Free and Poly-Methyl-Methacrylate-Bounded BODIPYs: Photodynamic and Antimigratory Effects in 2D and 3D Cancer Models. Cancers (Basel) 2022; 15:cancers15010092. [PMID: 36612089 PMCID: PMC9817850 DOI: 10.3390/cancers15010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Several limitations, including dark toxicity, reduced tumor tissue selectivity, low photostability and poor biocompatibility hamper the clinical use of Photodynamic therapy (PDT) in cancer treatment. To overcome these limitations, new PSs have been synthetized, and often combined with drug delivery systems, to improve selectivity and reduce toxicity. In this context, BODIPYs (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) have recently emerged as promising and easy-to-handle scaffolds for the preparation of effective PDT antitumor agents. In this study, the anticancer photodynamic effect of newly prepared negatively charged polymethyl methacrylate (nPMMA)-bounded BODIPYs (3@nPMMA and 6@nPMMA) was evaluated on a panel of 2D- and 3D-cultured cancer cell lines and compared with free BODIPYs. In particular, the effect on cell viability was evaluated, along with their ability to accumulate into the cells, induce apoptotic and/or necrotic cell death, and inhibit cellular migration. Our results indicated that 3@nPMMA and 6@nPMMA reduce cancer cell viability in 3D models of HC116 and MCF7 cells more effectively than the corresponding free compounds. Importantly, we demonstrated that MDA-MB231 and SKOV3 cell migration ability was significantly impaired by the PDT treatment mediated by 3@nPMMA and 6@nPMMA nanoparticles, likely indicating the capability of this approach to reduce metastatic tumor potential.
Collapse
Affiliation(s)
- Marco Ballestri
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Elisa Martella
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Matilde Tubertini
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
- Correspondence: (M.B.G.); (G.V.); Tel.: +39-033-133-9418 (M.B.C.); +39-051-639-8283 (G.V.)
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
- Correspondence: (M.B.G.); (G.V.); Tel.: +39-033-133-9418 (M.B.C.); +39-051-639-8283 (G.V.)
| |
Collapse
|
22
|
Photodynamic Inactivation of Bacteria and Biofilms with Benzoselenadiazole-Doped Metal-Organic Frameworks. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248908. [PMID: 36558041 PMCID: PMC9781904 DOI: 10.3390/molecules27248908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are difficult to treat due to their resistance to traditional antibiotics. Although photodynamic therapy (PDT) has made significant progress in biomedical applications, most photosensitizers have poor water solubility and can thus aggregate in hydrophilic environments, leading to the quenching of photosensitizing activity in PDT. Herein, a benzoselenadiazole-containing ligand was designed and synthesized to construct the zirconium (IV)-based benzoselenadiazole-doped metal-organic framework (Se-MOF). Characterizations revealed that Se-MOF is a type of UiO-68 topological framework with regular crystallinity and high porosity. Compared to the MOF without benzoselenadiazole, Se-MOF exhibited a higher 1O2 generation efficacy and could effectively kill Staphylococcus aureus bacteria under visible-light irradiation. Importantly, in vitro biofilm experiments confirmed that Se-MOF could efficiently inhibit the formation of bacteria biofilms upon visible-light exposure. This study provides a promising strategy for developing MOF-based PDT agents, facilitating their transformation into clinical photodynamic antibacterial applications.
Collapse
|
23
|
Yan R, Liu J, Dong Z, Peng Q. Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. BIOMATERIALS ADVANCES 2022; 144:213218. [PMID: 36436431 DOI: 10.1016/j.bioadv.2022.213218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Oral diseases, such as dental caries, periodontitis and oral cancer, have a very high morbidity over the world. Basically, many oral diseases are commonly related to bacterial infections or cell malignant proliferation, and usually located on the superficial positions. These features allow the convenient and efficient application of photodynamic therapy (PDT) for oral diseases, since PDT is ideally suitable for the diseases on superficial sites and has been widely used for antimicrobial and anticancer therapy. Photosensitizers (PSs) are an essential element in PDT, which induce the generation of a large number of reactive oxygen species (ROS) upon absorption of specific lights. Almost all the PSs are small molecules and commonly suffered from various problems in the PDT environment, such as low solubility and poor stability. Recently, reports on the nanomedicine-based PDT have been well documented. Various functionalized nanomaterials can serve either as the PSs carriers or the direct PSs, thus enhancing the PDT efficacy. Herein, we aim to provide a comprehensive understanding of the features of different oral diseases and discuss the potential applications of nanomedicine-based PDT in the treatment of some common oral diseases. Also, the concerns and possible solutions for nanomaterials-mediated PDT are discussed.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Cheng X, Wei Y, Jiang X, Wang C, Liu M, Yan J, Zhang L, Zhou Y. Insight into the Prospects for Tumor Therapy Based on Photodynamic Immunotherapy. Pharmaceuticals (Basel) 2022; 15:1359. [PMID: 36355531 PMCID: PMC9693017 DOI: 10.3390/ph15111359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2024] Open
Abstract
Malignancy is one of the common diseases with high mortality worldwide and the most important obstacle to improving the overall life expectancy of the population in the 21st century. Currently, single or combined treatments, including surgery, chemotherapy, and radiotherapy, are still the mainstream regimens for tumor treatment, but they all present significant side effects on normal tissues and organs, such as organ hypofunction, energy metabolism disorders, and various concurrent diseases. Based on this, theranostic measures for the highly selective killing of tumor cells have always been a hot area in cancer-related fields, among which photodynamic therapy (PDT) is expected to be an ideal candidate for practical clinical application due to its precise targeting and excellent safety performance, so-called PDT refers to a therapeutic method mainly composed of photosensitizers (PSs), laser light, and reactive oxygen species (ROS). Photoimmunotherapy (PIT), a combination of PDT and immunotherapy, can induce systemic antitumor immune responses and inhibit continuing growth and distant metastasis of residual tumor cells, demonstrating a promising application prospect. This article reviews the types of immune responses that occur in the host after PDT treatment, including innate and adaptive immunity. To further help PIT-related drugs improve their pharmacokinetic properties and bioavailability, we highlight the potential improvement of photodynamic immunotherapy from three aspects: immunostimulatory agents, tumor-associated antigens (TAAs) as well as different immune cells. Finally, we focus on recent advances in various strategies and shed light on their corresponding mechanisms of immune activation and possible clinical applications such as cancer vaccines. Having discovered the inherent potential of PDT and the mechanisms that PDT triggers host immune responses, a variety of immunotherapeutic strategies have been investigated in parallel with approaches to improve PDT efficiency. However, it remains to be further elucidated under what conditions the immune effect induced by PDT can achieve tumor immunosuppression and to what extent PDT-induced antitumor immunity will lead to complete tumor rejection. Currently, PIT presents several outstanding intractable challenges, such as the aggregation ability of PSs locally in tumors, deep tissue penetration ability of laser light, immune escape, and biological toxicity, and it is hoped that these issues raised will help to point out the direction of preclinical research on PIT and accelerate its transition to clinical practice.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Chunli Wang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Mengyu Liu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Jiaxin Yan
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Pathology Department, Jiaozuo Second People’s Hospital, Jiaozuo 454001, China
| |
Collapse
|
25
|
Li Y, Nie J, Dai J, Yin J, Huang B, Liu J, Chen G, Ren L. pH/Redox Dual-Responsive Drug Delivery System with on-Demand RGD Exposure for Photochemotherapy of Tumors. Int J Nanomedicine 2022; 17:5621-5639. [DOI: 10.2147/ijn.s388342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|
26
|
Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022; 155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common new cancer case and the second most fatal malignancy in men. Surgery, endocrine therapy, radiotherapy and chemotherapy are the main clinical treatment options for PCa. However, most prostate cancers can develop into castration-resistant prostate cancer (CRPC), and due to the invasiveness of prostate cancer cells, they become resistant to different treatments and activate tumor-promoting signaling pathways, thereby inducing chemoresistance, radioresistance, ADT resistance, and immune resistance. Nanotechnology, which can combine treatment with diagnostic imaging tools, is emerging as a promising treatment modality in prostate cancer therapy. Nanoparticles can not only promote their accumulation at the pathological site through passive targeting techniques for enhanced permeability and retention (EPR), but also provide additional advantages for active targeting using different ligands. This property results in a reduced drug dose to achieve the desired effect, a longer duration of action within the tumor and fewer side effects on healthy tissues. In addition, nanotechnology can create good synergy with radiotherapy, chemotherapy, thermotherapy, photodynamic therapy and gene therapy to enhance their therapeutic effects with greater scope, and reduce the resistance of prostate cancer. In this article, we intend to review and discuss the latest technologies regarding the use of nanomaterials as therapeutic and diagnostic tools for prostate cancer.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Chen Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
27
|
Ramasanoff RR, Sokolov PA. Intersystem Crossing Rate of C60-tryptophan. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Toum Terrones Y, Torresán MF, Mirenda M, Rodríguez HB, Wolosiuk A. Photoactive Red Fluorescent SiO 2 Nanoparticles Based on Controlled Methylene Blue Aggregation in Reverse Microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6786-6797. [PMID: 35609298 DOI: 10.1021/acs.langmuir.1c02458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a reverse microemulsion synthesis procedure for incorporating methylene blue (MB), a known FDA-approved type-II red-absorbing photosensitizer and 1O2 generator, into the matrix of hydrophobic-core/hydrophilic-shell SiO2 nanoparticles. Different synthesis conditions were explored with the aim of controlling the entrapped-dye aggregation at high dye loadings in the hydrophobic protective core; minimizing dye aggregation ensured highly efficient photoactive nanoentities for 1O2 production. Monitoring the synthesis in real time using UV-vis absorption allowed tracking of the dye aggregation process. In particular, silica nanoparticles (MB@SiO2 NPs) of ∼50 nm diameter size with a high local entrapped-MB concentration (∼10-2 M, 1000 MB molecules per NP) and a moderate proportion of dye aggregation were obtained. The as-prepared MB@SiO2 NPs showed a high singlet oxygen photogeneration efficiency (ΦΔ = 0.30 ± 0.05), and they can be also considered as red fluorescent probes (ΦF ∼ 0.02, λmax ∼ 650 nm). The distinctive photophysical and photochemical characteristics of the synthesized NPs reveal that the reverse microemulsion synthesis procedure offers an interesting strategy for the development of complex theranostic nano-objects for photodynamic therapy.
Collapse
Affiliation(s)
- Yamili Toum Terrones
- Gerencia Química - Instituto de Nanociencia y Nanotecnología (INN - CONICET), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650 KNA San Martín, Buenos Aires, Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Diagonal 113 y 64 S/N, B1904 DPI La Plata, Argentina
| | - María Fernanda Torresán
- Gerencia Química - Instituto de Nanociencia y Nanotecnología (INN - CONICET), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650 KNA San Martín, Buenos Aires, Argentina
| | - Martín Mirenda
- Gerencia Química - Instituto de Nanociencia y Nanotecnología (INN - CONICET), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650 KNA San Martín, Buenos Aires, Argentina
| | - Hernán B Rodríguez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428 EHA Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428 EHA Buenos Aires, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química - Instituto de Nanociencia y Nanotecnología (INN - CONICET), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650 KNA San Martín, Buenos Aires, Argentina
| |
Collapse
|
29
|
Mitochondria-Targeting and ROS-Responsive Nanocarriers via Amphiphilic TPP-PEG-TK-Ce6 for Nanoenabled Photodynamic Therapy. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/1178039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Designing targeted-delivering and stimuli-responsive nanocarriers for photodynamic therapy (PDT) is an appealing method, especially, targeting delivery of photosensitizers to mitochondria as the most sensitive cellular organelles to reactive oxygen species (ROS) could significantly enhance the therapeutic efficacy of PDT. In this study, we synthesized triphenylphosphonium bonded PEG-NH2 (TPP-PEG-NH2) and bridged to chlorin e6 (Ce6) via thioketal (TK) linkage to obtain red light-triggered, amphiphilic copolymer (TPP-PEG-TK-Ce6), which could self-assemble into micelles with an average size of 160 nm and zeta potential of +20.1 mV. The in vitro release behavior of TPP-PEG-TK-Ce6 nanocarriers showed a light-activated way and was dependent on the H2O2 concentration. TPP-PEG-TK-Ce6 nanocarriers exhibited high cytotoxicity against C6 cells with illumination. Confocal laser scanning microscopy observation indicated that TPP-PEG-TK-Ce6 nanocarriers were efficiently internalized into the mitochondrion of C6 cells, released Ce6 via light activated. By contrast, in the case of TPP-PEG-NH2 directly bonded Ce6 (TPP-PEG-Ce6) nanocarriers, little Ce6 was found in the mitochondrion. The stronger fluorescence in the mitochondrion of TPP-PEG-TK-Ce6 nanocarriers originated from the mitochondrial-targeting capability of TPP and the cleavage of TK linkages activated by light irradiation, which greatly improved the cellular uptake of TPP-PEG-TK-Ce6 nanocarriers and released more Ce6 in the mitochondrion. This work provided a facile strategy to improve PDT efficacy.
Collapse
|
30
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
31
|
Villela Zumaya AL, Mincheva R, Raquez JM, Hassouna F. Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers (Basel) 2022; 14:1188. [PMID: 35335518 PMCID: PMC8955999 DOI: 10.3390/polym14061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| |
Collapse
|
32
|
Nanomedicine in Clinical Photodynamic Therapy for the Treatment of Brain Tumors. Biomedicines 2022; 10:biomedicines10010096. [PMID: 35052776 PMCID: PMC8772938 DOI: 10.3390/biomedicines10010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
The current treatment for malignant brain tumors includes surgical resection, radiotherapy, and chemotherapy. Nevertheless, the survival rate for patients with glioblastoma multiforme (GBM) with a high grade of malignancy is less than one year. From a clinical point of view, effective treatment of GBM is limited by several challenges. First, the anatomical complexity of the brain influences the extent of resection because a fine balance must be struck between maximal removal of malignant tissue and minimal surgical risk. Second, the central nervous system has a distinct microenvironment that is protected by the blood–brain barrier, restricting systemically delivered drugs from accessing the brain. Additionally, GBM is characterized by high intra-tumor and inter-tumor heterogeneity at cellular and histological levels. This peculiarity of GBM-constituent tissues induces different responses to therapeutic agents, leading to failure of targeted therapies. Unlike surgical resection and radiotherapy, photodynamic therapy (PDT) can treat micro-invasive areas while protecting sensitive brain regions. PDT involves photoactivation of photosensitizers (PSs) that are selectively incorporated into tumor cells. Photo-irradiation activates the PS by transfer of energy, resulting in production of reactive oxygen species to induce cell death. Clinical outcomes of PDT-treated GBM can be advanced in terms of nanomedicine. This review discusses clinical PDT applications of nanomedicine for the treatment of GBM.
Collapse
|
33
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
34
|
Photoinactivation of multispecies cariogenic biofilm mediated by aluminum phthalocyanine chloride encapsulated in chitosan nanoparticles. Lasers Med Sci 2021; 37:2033-2043. [PMID: 34812971 DOI: 10.1007/s10103-021-03466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to characterize the aluminum phthalocyanine chloride (AlClPc) encapsulated in chitosan nanoparticles (CN) and apply it in antimicrobial photodynamic therapy (aPDT) on multispecies biofilm composed of Streptococcus mutans, Lactobacillus casei, and Candida albicans to analyze the antimicrobial activity and lactate production after treatment. Biofilms were formed in 24-well polystyrene plates at 37 °C for 48 h under microaerophilia. The following groups were evaluated (n = 9): as a positive control, 0.12% chlorhexidine gluconate (CHX); phosphate-buffered saline (PBS) as a negative control; 2.5% CN as release vehicle control; the dark toxicity control of the formulations used (AlClPc and AlClPc + CN) was verified in the absence of light; for aPDT, after 30 min incubation time, the photosensitizers at a final concentration of 5.8 × 10-3 mg/mL were photoirradiated for 1 min by visible light using a LED device (AlClPc + L and AlClPc + CN + L) with 660 nm at the energy density of 100 J/cm2. An in vitro kit was used to measure lactate. The biofilm composition and morphology were observed by scanning electron microscopy (SEM). The antimicrobial activity was analyzed by quantifying colony forming units per mL (CFU/mL) of each microorganism. Bacterial load between groups was analyzed by ANOVA and Tukey HSD tests (α = 0.05). A lower lactate dosage was observed in the aPDT AlClPc + CN + L and CHX groups compared to the CN and AlClPc groups. The aPDT mediated by the nanoconjugate AlClPc + CN + L showed a significant reduction in the viability of S. mutans (3.18 log10 CFU/mL), L. casei (4.91 log10 CFU/mL), and C. albicans (2.09 log10 CFU/mL) compared to the negative control PBS (p < 0.05). aPDT using isolated AlClPc was similar to PBS to the three microorganisms (p > 0.05). The aPDT mediated by the nanoconjugate AlClPc + CN + L was efficient against the biofilm of S. mutans, L. casei, and C. albicans.
Collapse
|
35
|
Miao Z, Wang Y, Li S, Zhang M, Xu M. One-pot synthesis chlorin e6 nano-precipitation for colorectal cancer treatment Ce6 NPs for colorectal cancer treatment. IET Nanobiotechnol 2021; 15:680-685. [PMID: 34694720 PMCID: PMC8675780 DOI: 10.1049/nbt2.12065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
The drug nanoparticles free of additional carriers hold great promise in drug delivery and are suitable for the therapy of cancers. Herein, we developed a one-pot method to prepare chlorin e6 (Ce6) nano-precipitations (Ce6 NPs) for effective photodynamic therapy of colorectal cancer. The drug loading of Ce6 NPs was around 81% and showed acceptable stability, high biocompatibility as well as effective reactive oxygen species (ROS) generation capability. As a result, the Ce6 NPs can produce significantly elevated ROS upon laser irradiations and achieved better anticancer benefits than free Ce6.
Collapse
Affiliation(s)
- Zhongxing Miao
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Yujie Wang
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Shengjie Li
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Min Zhang
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Meng Xu
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| |
Collapse
|
36
|
Li Y, Lu J, Deng X, Wang X, Jia F, Zhong S, Cui X, Pan Z, Shao L, Wu Y. Self-assembling combretastatin A4 incorporated protamine/nanodiamond hybrids for combined anti-angiogenesis and mild photothermal therapy in liver cancer. NANOTECHNOLOGY 2021; 32:465101. [PMID: 34371485 DOI: 10.1088/1361-6528/ac1be0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Tumor angiogenesis has been identified as an important factor in the development and progression of tumors, and anti-angiogenesis therapy has been recognized as an effective tumor therapy pattern. The unique characteristics of nanodiamonds (NDs) have been explored for photothermal therapy (PTT) against cancer, while the efficiency of mild PTT mediated by bare NDs was limited. The combination of different therapies into a single nanoplatform has shown great potential for synergistic cancer treatment. In this investigation, we integrated hydrophobic antiangiogenesis agent combretastatin A4 (CA4) into the protamine sulfate (PS) functionalized NDs hybrids (NDs@PS) with a noncovalent self-assembling method (CA4-NDs@PS) for potential combined anti-angiogenesis and mild PTT in liver cancer. The resulted CA4-NDs@PS NDs exhibited high drug loading ability, good dispersibility and colloidal stability. The near-infrared (NIR) laser irradiation could trigger the release of CA4 from CA4-NDs@PS NDs and elevate the temperature of CA4-NDs@PS NDs aqueous solution.In vitroresults illustrated that CA4-NDs@PS coupled with laser irradiation could remarkably enhance HepG-2 cells killing efficiency, leading to an enhanced photocytotoxicity. Furthermore,in vivoexperiments revealed that CA4-NDs@PS exhibited a highly synergistic anticancer efficacy with NIR laser irradiation in HepG-2 tumor-bearing mice. Altogether, our present study fabricated a novel NDs@PS-based nanoplatform for combined anti-tumor angiogenesis and mild PTT against liver cancer.
Collapse
Affiliation(s)
- Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shihan Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Organic Materials Testing Technology and Quality Evaluation, Beijing Center for Physical and Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
37
|
Yoshinaga M, Rocha WR. Theoretical Investigation of the 4,5-Dibromorodamine Methyl Ester (TH9402) Photosensitizer Used in Photodynamic Therapy: Photophysics, Reactions in the Excited State, and Interactions with DNA. J Phys Chem B 2021; 125:8932-8943. [PMID: 34324360 DOI: 10.1021/acs.jpcb.1c05463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photosensitizer (PS) molecules play a critical role in photodynamic therapy of cancer and the understanding of the molecular mechanism involved in the photophysics of these compounds, and their reactions in the excited state are, therefore, of great interest for the development of this technique. In this article, the photophysics of the cationic PS 4,5-dibromorodamine methyl ester (TH9402), its electron- and energy-transfer reactions in the excited triplet state, with molecular oxygen, nitric oxide, guanosine-5'-monophosphate (GMP), and guanine, and the interaction with DNA were evaluated. Time-dependent density functional theory calculations at the TPSSh/Def2-TZVP//B3LYP/Def2-TZVP level of theory in water solution reveals that the PS has a bright S1 state 2.33 eV above the ground state that produces a fluorescent rate constant of 5.40 × 107 s-1, calculated using Fermi's golden rule within a path integral formalism. Once excited to the bright state, the main intersystem crossing (ISC) channel involves the coupling with the T2 state just below S1 (S1 → T2 → T1) with an overall ISC rate constant of 10.1 × 107 s-1, in good agreement with the experimental data. Excited-state reaction thermodynamics, computed at the M06-2X/Def2-TZVP//B3LYP/Def2-TZVP level of theory in water, showed that from all the excited-state electron-transfer reactions studied, only the transfer from GMP to the PS is thermodynamically favorable, independent of the protonation state of guanosine, which indicates a possible DNA photo-oxidation mechanism for the PS. Triplet-triplet energy-transfer reactions from TH9402 to molecular oxygen, producing reactive singlet oxygen, and to the deprotonated guanosine, producing 3GMP2-, are also thermodynamically favorable, with ΔG = -2.0 and -24.0 kcal//mol, respectively. However, the energy transfer to the monoprotonated guanosine is not favorable, (ΔG = 36.1), suggesting that in the DNA double-strand environment, this energy-transfer process may not be observed. The results show that the PS can act through electron transfer and triplet-triplet energy-transfer reactions involved in mechanism types I and II in photodynamic therapy. Interactions of TH9402 with the d(AGACGTCT)2 octanucleotide revealed that the PS can intercalate between the d(GpC)-d(CpG) base pairs in three different orientations and, upon intercalation, the π → π* transition of the PS shows a bathochromic shift up to 90 nm and up to 60% decrease in intensity. Interactions through groove binding showed a smaller bathochromic shift of 52.2 nm and a 56% decrease in intensity of the main transition band.
Collapse
Affiliation(s)
- Mariana Yoshinaga
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
38
|
Chen B, Cao J, Zhang K, Zhang YN, Lu J, Zubair Iqbal M, Zhang Q, Kong X. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2028-2045. [PMID: 34251996 DOI: 10.1080/09205063.2021.1954138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has emerged as a promising strategy for complete tumor ablation therapy. Herein, a boron dipyrromethene (BODIPY)-conjugated hyaluronic acid polymer that can self-assemble to form the nanoparticles (BODIPY-HA NPs) was prepared for combined cancer PDT and PTT. The fluorescence emission and reactive oxygen species (ROS) generation of BODIPY-HA NPs were inhibited because of the π-π stacking behavior of BODIPY, resulting in photothermal effect under 808 nm light irradiation. Upon the internalization by cancer cells, the BODIPY-HA NPs could disassemble into BODIPY-HA molecules, with the recovery of the fluorescence and ROS generation for PDT. Importantly, in vitro results confirmed that combined PTT and PDT have exhibited better anticancer effect than PTT alone upon 808 nm laser irradiation. These results showed that the self-assembled BODIPY-HA NPs may be a promising nanomedicine for synergistic cancer PDT and PTT.
Collapse
Affiliation(s)
- Bowen Chen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Cao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kebiao Zhang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan-Ning Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiaju Lu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
39
|
Yan J, Gao T, Lu Z, Yin J, Zhang Y, Pei R. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27749-27773. [PMID: 34110790 DOI: 10.1021/acsami.1c06818] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving controlled and accurate delivery of photosensitizers (PSs) into tumor sites is a major challenge in conventional photodynamic therapy (PDT). Aptamer is a short oligonucleotide sequence (DNA or RNA) with a folded three-dimensional structure, which can selectively bind to specific small molecules, proteins, or the whole cells. Aptamers could act as ligands and be modified onto PSs or nanocarriers, enabling specific recognition and binding to tumor cells or their membrane proteins. The resultant aptamer-modified PSs or PSs-containing nanocarriers generate amounts of reactive oxygen species with light irradiation and obtain superior photodynamic therapeutic efficiency in tumors. Herein, we overview the recent progress in the designs and applications of aptamer-targeted photodynamic platforms for tumor therapy. First, we focus on the progress on the rational selection of aptamers and summarize the applications of aptamers which have been applied for targeted tumor diagnosis and therapy. Then, aptamer-targeted photodynamic therapies including various aptamer-PSs, aptamer-nanocarriers containing PSs, and aptamer-nano-photosensitizers are highlighted. The aptamer-targeted synergistically therapeutic platforms including PDT, photothermal therapy, and chemotherapy, as well as the imaging-guided theranostics, are also discussed. Finally, we offer an insight into the development trends and future perspectives of aptamer-targeted photodynamic platforms for tumor therapy.
Collapse
Affiliation(s)
- Jincong Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| |
Collapse
|
40
|
Zhao R, Cao J, Yang X, Zhang Q, Iqbal MZ, Lu J, Kong X. Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomater Sci 2021; 9:4568-4590. [PMID: 34113942 DOI: 10.1039/d1bm00508a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages with the M1 phenotype are a type of immune cell with exciting prospects for cancer therapy; however, when these macrophages infiltrate into tumours, many of them are induced by the tumour microenvironment to transform into the M2 type, which can enable tumour defence against external therapeutic strategies, assisting in tumour development. Macrophages have strong plasticity and functional heterogeneity, and their phenotypic transformation is complex and still poorly understood in relation to cancer therapy. Recent material advances in inorganic nanomaterials, especially inorganic elements in vivo, have accelerated the development of macrophage regulation-based cancer treatments. This review summarizes the basics of recent research on macrophage phenotype transformation and discusses the current challenges in macrophage type regulation. Then, the current achievements involving inorganic material-based macrophage regulation and the related anticancer effects of induced macrophages and their extracellular secretions are reviewed systematically. Importantly, inorganic nanomaterial-based macrophage phenotype regulation is flexible and can be adapted for different types of cancer therapies, presenting a possible novel approach for the generation of immune materials for cancer therapy.
Collapse
Affiliation(s)
- Ruibo Zhao
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jinping Cao
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xinyan Yang
- School of Bioengineering, Hangzhou Medical College, Hangzhou 310013, Zhejiang, China
| | - Quan Zhang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jiaju Lu
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiangdong Kong
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
41
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
42
|
Zhang Y, Zhao R, Liu J, Kong H, Zhang K, Zhang YN, Kong X, Zhang Q, Zhao Y. Hierarchical nano-to-molecular disassembly of boron dipyrromethene nanoparticles for enhanced tumor penetration and activatable photodynamic therapy. Biomaterials 2021; 275:120945. [PMID: 34126410 DOI: 10.1016/j.biomaterials.2021.120945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
The development of activatable photosensitizers (PSs) is of particular interest for achieving tumor photodynamic therapy (PDT) with minimal side effects. However, the in vivo applications of PSs are limited by complex physiological and biological delivery barriers. Herein, boron dipyrromethene (BDP)-based nanoparticles are developed through the self-assembly of a multifunctional "one-for-all" building block for enhanced tumor penetration and activatable PDT. The nanoparticles show excellent colloidal stability and long circulation lifetime in blood. Once they reach the tumor site, the first-stage size reduction occurs due to the hydrolysis of the Schiff base bond between polyethylene glycol and the cyclic Arg-Gly-Asp peptide in the acidic tumor microenvironment (pH~6.5), facilitating tumor penetration and specific recognition by cancer cells overexpressing integrin ανβ3 receptors. Upon the endocytosis by cancer cells, the second-stage size reduction is triggered by more acidic pH in lysosomes (pH~4.5). Importantly, the protonated diethylamino groups can block photoinduced electron transfer from the amine donor to the excited PSs and accelerate complete disassembly of the nanoparticles into single PS molecule, with the recovery of the fluorescence and photoactivity for efficient PDT. This study presents a smart PS delivery strategy involving acidity-triggered hierarchical disassembly from the nano to molecular scale for precise tumor PDT.
Collapse
Affiliation(s)
- Yonghe Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronics, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hao Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Kebiao Zhang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuan-Ning Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
43
|
Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui K, Xu X, Wang F, Zhang L. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int J Biol Sci 2021; 17:1361-1381. [PMID: 33867852 PMCID: PMC8040477 DOI: 10.7150/ijbs.58773] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death, which accounts for approximately 10% of all new cancer cases worldwide. Surgery is the main method for treatment of early-stage CRC. However, it is not effective for most metastatic tumors, and new treatment and diagnosis strategies need to be developed. Photosensitizers (PSs) play an important role in the treatment of CRC. Phototherapy also has a broad prospect in the treatment of CRC because of its low invasiveness and low toxicity. However, most PSs are associated with limitations including poor solubility, poor selectivity and high toxicity. The application of nanomaterials in PSs has added many advantages, including increased solubility, bioavailability, targeting, stability and low toxicity. In this review, based on phototherapy, we discuss the characteristics and development progress of PSs, the targeting of PSs at organ, cell and molecular levels, and the current methods of optimizing PSs, especially the application of nanoparticles as carriers in CRC. We introduce the photosensitizer (PS) targeting process in photodynamic therapy (PDT), the damage mechanism of PDT, and the application of classic PS in CRC. The action process and damage mechanism of photothermal therapy (PTT) and the types of ablation agents. In addition, we present the imaging examination and the application of PDT / PTT in tumor, including (fluorescence imaging, photoacoustic imaging, nuclear magnetic resonance imaging, nuclear imaging) to provide the basis for the early diagnosis of CRC. Notably, single phototherapy has several limitations in vivo, especially for deep tumors. Here, we discuss the advantages of the combination therapy of PDT and PTT compared with the single therapy. At the same time, this review summarizes the clinical application of PS in CRC. Although a variety of nanomaterials are in the research and development stage, few of them are actually on the market, they will show great advantages in the treatment of CRC in the near future.
Collapse
Affiliation(s)
- Jiaxin Yan
- Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,School of Pharmacy, Henan University, Kaifeng Kaifeng 475004, China
| | - Chunli Wang
- Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Kunli Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Xu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Feng Wang
- Guangming Substation of Shenzhen Ecological Environment Monitoring Station, Shenzhen 518107, P. R. China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
44
|
Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Cancer treatment has yet to find a "silver bullet" capable of selectively and effectively kill tumor cells without damaging healthy cells. Nanomedicine is a promising field that can combine several moieties in one system to produce a multifaceted nanoplatform. The tumor microenvironment (TME) is considered responsible for the ineffectiveness of cancer therapeutics and the difficulty in the translation from the bench to bed side of novel nanomedicines. A promising approach is the use of combinatorial therapies targeting the TME with the use of stimuli-responsive nanomaterials which would increase tumor targeting. Contemporary combined strategies for TME-targeting nanoformulations are based on the application of external stimuli therapies, such as photothermy, hyperthermia or ultrasounds, in combination with stimuli-responsive nanoparticles containing a core, usually composed by metal oxides or graphene, and a biocompatible stimuli-responsive coating layer that could also contain tumor targeting moieties and a chemotherapeutic agent to enhance the therapeutic efficacy. The obstacles that nanotherapeutics must overcome in the TME to accomplish an effective therapeutic cargo delivery and the proposed strategies for improved nanotherapeutics will be reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís R Raposo
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rúben Valente
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
45
|
EGFR-conjugated hydrogel accelerates wound healing on ulcer-induced burn wounds by targeting collagen and inflammatory cells using photoimmunomodulatory inhibition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111541. [PMID: 33255093 DOI: 10.1016/j.msec.2020.111541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
In the present study, we fabricated an epidermal growth factor receptor (EGFR)-conjugated hydrogel to promote wound healing in cold restraint-induced gastric ulceration on burn wounds targeting collagen and inflammatory cells for the treatment of burns and gastric ulcers. Cytotoxicity and cell proliferation assays demonstrated good biocompatibility of hydrogel as a suitable extracellular matrix for targeted cells and support for regenerative cell growth. These findings were confirmed by staining methods. In vitro wound healing was confirmed cell migration in the targeted cells. The effect of the EGFR-H was investigated in cold restraint-induced gastric ulcers in rats, where the treatment was started immediately after ulcer induction. In the in vivo experiment, the EGFR-H demonstrated enhanced ulcer healing ability and less scarring compared to the hydrogel alone and controls. Thus, EGFR-H promotes healing of cold restraint-induced gastric ulcer via EGFR conjugated with a hydrogel. The present study demonstrates a novel pathway to fabricate hydrogels as suitable wound dressing biomaterials to improve deep partial thickness burn wound healing and prevent scar formation when aided by laser therapy.
Collapse
|
46
|
Alsaab HO, Alghamdi MS, Alotaibi AS, Alzhrani R, Alwuthaynani F, Althobaiti YS, Almalki AH, Sau S, Iyer AK. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers (Basel) 2020; 12:E2793. [PMID: 33003374 PMCID: PMC7601252 DOI: 10.3390/cancers12102793] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 01/03/2023] Open
Abstract
Current research to find effective anticancer treatments is being performed on photodynamic therapy (PDT) with increasing attention. PDT is a very promising therapeutic way to combine a photosensitive drug with visible light to manage different intense malignancies. PDT has several benefits, including better safety and lower toxicity in the treatment of malignant tumors over traditional cancer therapy. This reasonably simple approach utilizes three integral elements: a photosensitizer (PS), a source of light, and oxygen. Upon light irradiation of a particular wavelength, the PS generates reactive oxygen species (ROS), beginning a cascade of cellular death transformations. The positive therapeutic impact of PDT may be limited because several factors of this therapy include low solubilities of PSs, restricting their effective administration, blood circulation, and poor tumor specificity. Therefore, utilizing nanocarrier systems that modulate PS pharmacokinetics (PK) and pharmacodynamics (PD) is a promising approach to bypassing these challenges. In the present paper, we review the latest clinical studies and preclinical in vivo studies on the use of PDT and progress made in the use of nanotherapeutics as delivery tools for PSs to improve their cancer cellular uptake and their toxic properties and, therefore, the therapeutic impact of PDT. We also discuss the effects that photoimmunotherapy (PIT) might have on solid tumor therapeutic strategies.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Maha S. Alghamdi
- Department of Pharmaceutical Care, King Abdul-Aziz Specialist Hospital (KAASH), Taif 26521, Saudi Arabia;
| | - Albatool S. Alotaibi
- College of Pharmacy, Taif University, Al Haweiah, Taif 21944, Saudi Arabia; (A.S.A.); (F.A.)
| | - Rami Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Fatimah Alwuthaynani
- College of Pharmacy, Taif University, Al Haweiah, Taif 21944, Saudi Arabia; (A.S.A.); (F.A.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Atiah H. Almalki
- Department of Pharmaceutical chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48021, USA; (S.S.); (A.K.I.)
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48021, USA; (S.S.); (A.K.I.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|