1
|
Bulkina A, Prilepskii A. Bacterial cellulose: Is it really a promising biomedical material? Carbohydr Polym 2025; 357:123427. [PMID: 40158967 DOI: 10.1016/j.carbpol.2025.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/25/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Bacterial cellulose (BC) is currently considered a promising biomaterial due to its specific structure and properties. However, despite extensive research, questions about its fundamental properties, especially biocompatibility, remain. Thus, the purpose of this review is to analyze the results of in vivo trials from different areas of biomedicine, including wound healing, tissue engineering, drug delivery, and biomedical implants. The primary question guiding our review was "Why is bacterial cellulose still not used in clinical practice?" Analysis of the literature has shown that the results of in vivo studies often contradict each other. For example, BC caused and did not cause an immune response in an equal number of reviewed articles. Its efficacy in pure form generally does not differ significantly from that of materials already on the market. Conversely, BC may prove to be a valuable material in the long term, not because of its efficacy, but rather because of its affordability and ease of use. Additionally, challenges associated with immune reactions, long-term biocompatibility, and the necessity for standardized experimental protocols must be addressed. We expect that this review will encourage a more thoughtful investigation of BC to bring it into practical medicine.
Collapse
Affiliation(s)
- Anastasia Bulkina
- ITMO University, Laboratory for Bioactive Materials in Tissue Engineering 9, Lomonosova str., Saint Petersburg 191002, Russian Federation
| | - Artur Prilepskii
- ITMO University, Laboratory for Bioactive Materials in Tissue Engineering 9, Lomonosova str., Saint Petersburg 191002, Russian Federation.
| |
Collapse
|
2
|
Muniz NO, Baudequin T. Biomimetic and Nonbiomimetic Approaches in Dura Substitutes: The Influence of Mechanical Properties. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:174-189. [PMID: 38874958 DOI: 10.1089/ten.teb.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The dura mater, the furthest and strongest layer of the meninges, is crucial for protecting the brain and spinal cord. Its biomechanical behavior is vital, as any alterations can compromise biological functions. In recent decades, interest in the dura mater has increased due to the need for hermetic closure of dural defects prompting the development of several substitutes. Collagen-based dural substitutes are common commercial options, but they lack the complex biological and structural elements of the native dura mater, impacting regeneration and potentially causing complications like wound/postoperative infection and cerebrospinal fluid (CSF) leakage. To face this issue, recent tissue engineering approaches focus on creating biomimetic dura mater substitutes. The objective of this review is to discuss whether mimicking the mechanical properties of native tissue or ensuring high biocompatibility and bioactivity is more critical in developing effective dural substitutes, or if both aspects should be systematically linked. After a brief description of the properties and architecture of the native cranial dura, we describe the advantages and limitations of biomimetic dura mater substitutes to better understand their relevance. In particular, we consider biomechanical properties' impact on dura repair's effectiveness. Finally, the obstacles and perspectives for developing the ideal dural substitute are explored.
Collapse
Affiliation(s)
- Nathália Oderich Muniz
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne Cedex, France
| | - Timothée Baudequin
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne Cedex, France
| |
Collapse
|
3
|
Guan S, Sun C, Wen C, Yao B, Xu J, Sun C. A multifunctional biomimetic double-layer composite hydrogel with wet adhesion and antioxidant activity for dural repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-22. [PMID: 39928052 DOI: 10.1080/09205063.2025.2460373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
Cerebrospinal fluid (CSF) leakage caused by accidents or diseases resulting from traumatic brain injury, inflammation, tumor erosion and surgery can lead to many complications. In this study, a multifunctional composite double-layer hydrogel was designed by simulating the structure of native dura mater, which was composed of polyacrylic acid (PAA), polyethyleneimine (PEI), sodium alginate (SA), β-cyclodextrin (β-CD) and edaravone (Ed). The PAA/PEI layer had strong wet adhesion characteristics, while the PEI/SA@β-CD/Ed layer exhibited significant antioxidant, drug release and biocompatibility properties. By controlling the concentration of Ca2+, the gelation time can be adjusted rapidly within 95-215 s. Specifically, the final PAA/PEI/SA@β-CD/Ed composite hydrogel exhibited a porous network structure with high porosity and low swelling rate, improved tensile strength, sufficient biodegradability, favourable adhesion performance, enhanced DPPH and ABTS radicals scavenging abilities, and sustained Ed release capacity. In addition, the resulting hydrogel also showed excellent biocompatibility and protective effect on H2O2-induced oxidative damage in SH-SY5Y cells. These results preliminarily suggested that the PAA/PEI/SA@β-CD/Ed composite hydrogel would appear to be a promising candidate for dural repair.
Collapse
Affiliation(s)
- Shui Guan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, People's Republic of China
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, People's Republic of China
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Control Science and Engineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Chang Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, People's Republic of China
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Chuzhou Wen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, People's Republic of China
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Bing Yao
- Cancer Hospital of Dalian University of Technology, Shenyang, People's Republic of China
| | - Jianqiang Xu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, People's Republic of China
| | - Changkai Sun
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Control Science and Engineering, Dalian University of Technology, Dalian, People's Republic of China
| |
Collapse
|
4
|
Santos KO, Bertolo R, de Almeida Ibanez NL, Alves MR, Onuma TP, Ribeiro GC, de Souza Porto AJ, Barbeito CG, Pinato L, Jozala AF, Grotto D, Hataka A. Bacterial Cellulose Membrane Experimentally Implanted in the Peritoneum of Wistar Rats-Inflammatory Immunoreactivity and Oxidative Stress. Curr Issues Mol Biol 2024; 46:11729-11748. [PMID: 39590291 PMCID: PMC11592940 DOI: 10.3390/cimb46110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/28/2024] Open
Abstract
Bacterial cellulose (BC) has been used for various applications; however, studies investigating the immunohistochemical characteristics of the inflammatory and scarring component in BC implanted in the peritoneum in vivo have not yet been fully described. This study aimed to evaluate the systemic and organic safety of BC through oxidative stress, blood, and serum biochemical markers, as well as the late inflammatory response in rats, using histopathology and immunohistochemistry. Forty-three rats (26 males; 17 females) received BC in the peritoneal cavity (implanted group-IG), while twenty-seven rats (12 males; 15 females) served as the control (sham group-SG). Sixty days after surgery, oxidative stress in tissues, blood biochemical markers, and histopathological and immunohistochemical analyses for lymphocytes, macrophages, collagen, and vascular response around the BC were assessed. Only one oxidative stress marker, glutathione peroxidase, was elevated in the liver of IG rats. Creatine kinase MB and lactate dehydrogenase levels were significantly lower in IG animals. Histopathological analysis showed granulomatous inflammation in 93% of IG rats, with 74% of mild intensity. Immunohistochemistry revealed a significant macrophage presence (F4/80), with CD3, CD20, and F4/80 markers indicating differences favoring macrophages. In conclusion, BC implantation in the peritoneum induces a foreign body granulomatous response with prominent macrophage presence (F4/80). Type I and III collagen were observed around the membrane, and vascularization was intense 60 days post-implantation. From a biochemical and oxidative stress perspective, BC seems to be a safe material to be used in the peritoneal cavity.
Collapse
Affiliation(s)
- Karina Oliveira Santos
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-307, SP, Brazil; (K.O.S.); (G.C.R.)
| | - Rebecca Bertolo
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-307, SP, Brazil; (K.O.S.); (G.C.R.)
| | | | - Mônica Rodrigues Alves
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.L.d.A.I.); (A.F.J.); (D.G.)
| | - Tatiana Pessoa Onuma
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-307, SP, Brazil; (K.O.S.); (G.C.R.)
| | - Gabriella Costa Ribeiro
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-307, SP, Brazil; (K.O.S.); (G.C.R.)
| | - Anna Julia de Souza Porto
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-307, SP, Brazil; (K.O.S.); (G.C.R.)
| | - Cláudio Gustavo Barbeito
- Laboratory of Descriptive, Experimental and Comparative Histology and Embryology, School of Veterinary Sciences, National University of La Plata, National Scientific and Technical Research Council, La Plata 1900, CP, Argentina;
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia 17525-900, SP, Brazil;
| | - Angela Faustino Jozala
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.L.d.A.I.); (A.F.J.); (D.G.)
| | - Denise Grotto
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.L.d.A.I.); (A.F.J.); (D.G.)
| | - Alessandre Hataka
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-307, SP, Brazil; (K.O.S.); (G.C.R.)
| |
Collapse
|
5
|
Cheng X, Zhang Z, Ren H, Zou Z, Zhang Y, Qu Y, Chen X, Zhao J, He C. A low-swelling hydrogel as a multirole sealant for efficient dural defect sealing and prevention of postoperative adhesion. Natl Sci Rev 2024; 11:nwae160. [PMID: 38867893 PMCID: PMC11168225 DOI: 10.1093/nsr/nwae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
Dural defects and subsequent complications, including cerebrospinal fluid (CSF) leakage, are common in both spine surgery and neurosurgery, and existing clinical treatments are still unsatisfactory. In this study, a tissue-adhesive and low-swelling hydrogel sealant comprising gelatin and o-phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) is developed via the OPA/amine condensation reaction. The hydrogel shows an adhesive strength of 79.9 ± 12.0 kPa on porcine casing and a burst pressure of 208.0 ± 38.0 cmH2O. The hydrogel exhibits a low swelling ratio at physiological conditions, avoiding nerve compression in the limited spinal and intracranial spaces. In rat and rabbit models of lumbar and cerebral dural defects, the 4aPEG-OPA/gelatin hydrogel achieves excellent performance in dural defect sealing and preventing CSF leakage. Moreover, local inflammation, epidural fibrosis and postoperative adhesion in the defect areas are markedly reduced. Thus, these findings establish the strong potential of the hydrogel sealant for the effective watertight closure of dural defects.
Collapse
Affiliation(s)
- Xueliang Cheng
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun 130014, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hui Ren
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Zou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yang Qu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun 130014, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun 130014, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Azimi B, Rasti A, Fusco A, Macchi T, Ricci C, Hosseinifard MA, Guazzelli L, Donnarumma G, Bagherzadeh R, Latifi M, Roy I, Danti S, Lazzeri A. Bacterial Cellulose Electrospun Fiber Mesh Coated with Chitin Nanofibrils for Eardrum Repair. Tissue Eng Part A 2024; 30:340-356. [PMID: 37962275 DOI: 10.1089/ten.tea.2023.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
In this study, we develop a bio-based and bioactive nanofibrous patch based on bacterial cellulose (BC) and chitin nanofibrils (CNs) using an ionic liquid as a solvent for BC, aimed at tympanic membrane (TM) repair. Electrospun BC nanofiber meshes were produced via electrospinning, and surface-modified with CNs using electrospray. The rheology of the BC/ionic liquid system was investigated. The obtained CN/BC meshes underwent comprehensive morphological, physicochemical, and mechanical characterization. Cytotoxicity tests were conducted using L929 mouse fibroblasts, revealing a cell viability of 97.8%. In vivo tests on rabbit skin demonstrated that the patches were nonirritating. Furthermore, the CN/BC fiber meshes were tested in vitro using human dermal keratinocytes (HaCaT cells) and human umbilical vein endothelial cells as model cells for TM perforation healing. Both cell types demonstrated successful growth on these scaffolds. The presence of CNs resulted in improved indirect antimicrobial activity of the electrospun fiber meshes. HaCaT cells exhibited an upregulated mRNA expression at 6 and 24 h of key proinflammatory cytokines crucial for the wound healing process, indicating the potential benefits of CNs in the healing response. Overall, this study presents a natural and eco-sustainable fiber mesh with great promise for applications in TM repair, leveraging the synergistic effects of BC and CNs to possibly enhance tissue regeneration and healing. Impact statement Repair of tympanic membrane perforations following chronic otitis media is a main clinical issue in otologic surgery, where the underlying infection obstacles self-healing. To address this challenge, our study proposes a bio-based patch made of nanoscale carbohydrate materials (i.e., bacterial cellulose electrospun fibers and chitin nanofibrils) processed via green solvents. The scaffold is nonirritating in vivo, and cytocompatible with fibroblasts, endothelial cells, and keratinocytes. In epithelial cells, it stimulates the expression of the antimicrobial peptide human beta defensin 2, with a pathway of cytokine expression compatible with the wound healing process. Therefore, it could be applied with unsolved infective pathology.
Collapse
Affiliation(s)
- Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Atefeh Rasti
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Teresa Macchi
- Department of Translational Researches and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | | | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Roohollah Bagherzadeh
- Institute for Advanced Textile Materials and Technologies (ATMT), Amirkabir University of Technology, Tehran, Iran
| | - Masoud Latifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Khurana D, Suresh A, Nayak R, Shetty M, Sarda RK, Knowles JC, Kim HW, Singh RK, Singh BN. Biosubstitutes for dural closure: Unveiling research, application, and future prospects of dura mater alternatives. J Tissue Eng 2024; 15:20417314241228118. [PMID: 38343772 PMCID: PMC10858672 DOI: 10.1177/20417314241228118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 01/04/2025] Open
Abstract
The dura mater, as the crucial outermost protective layer of the meninges, plays a vital role in safeguarding the underlying brain tissue. Neurosurgeons face significant challenges in dealing with trauma or large defects in the dura mater, as they must address the potential complications, such as wound infections, pseudomeningocele formation, cerebrospinal fluid leakage, and cerebral herniation. Therefore, the development of dural substitutes for repairing or reconstructing the damaged dura mater holds clinical significance. In this review we highlight the progress in the development of dural substitutes, encompassing autologous, allogeneic, and xenogeneic replacements, as well as the polymeric-based dural substitutes fabricated through various scaffolding techniques. In particular, we explore the development of composite materials that exhibit improved physical and biological properties for advanced dural substitutes. Furthermore, we address the challenges and prospects associated with developing clinically relevant alternatives to the dura mater.
Collapse
Affiliation(s)
- Dolphee Khurana
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ankitha Suresh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Nayak
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunath Shetty
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rohit Kumar Sarda
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
| | - Rajendra K Singh
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Bhisham Narayan Singh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
8
|
Wang S, Ren S, Wang J, Chen M, Wang H, Chen C. Dural Reconstruction Materials for the Repairing of Spinal Neoplastic Cerebrospinal Fluid Leaks. ACS Biomater Sci Eng 2023; 9:6610-6622. [PMID: 37988580 DOI: 10.1021/acsbiomaterials.3c01524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Spinal tumors often lead to more complex complications than other bone tumors. Nerve injuries, dura mater defect, and subsequent cerebrospinal fluid (CSF) leakage generally appear in spinal tumor surgeries and are followed by serious adverse outcomes such as infections and even death. The use of suitable dura mater replacements to achieve multifunctionality in fluid leakage plugging, preventing adhesions, and dural reconstruction is a promising therapeutic approach. Although there have been innovative endeavors to manage dura mater defects, only a handful of materials have realized the targeted multifunctionality. Here, we review recent advances in dura repair materials and techniques and discuss the relative merits in both preclinical and clinical trials as well as future therapeutic options. With these advances, spinal tumor patients with dura mater defects may be able to benefit from novel treatments.
Collapse
Affiliation(s)
- Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Shangjun Ren
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, People's Republic of China
| | - Juan Wang
- Department of Stomatology, Beijing Jishuitan Hospital, Capital Medical University, No. 31, Xinjiekou East Street, Xicheng District, Beijing100035, People's Republic of China
| | - Mengyu Chen
- School of Medicine, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Hongru Wang
- Department of Neurology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, People's Republic of China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
- Department of Orthopedics, Beijing Jishuitan Hospital, Capital Medical University, No. 31, Xinjiekou East Street, Xicheng District, Beijing 100035, People's Republic of China
| |
Collapse
|
9
|
Ali M, Bathaei MJ, Istif E, Karimi SNH, Beker L. Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications. Adv Healthc Mater 2023; 12:e2300318. [PMID: 37235849 PMCID: PMC11469082 DOI: 10.1002/adhm.202300318] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Recent materials, microfabrication, and biotechnology improvements have introduced numerous exciting bioelectronic devices based on piezoelectric materials. There is an intriguing evolution from conventional unrecyclable materials to biodegradable, green, and biocompatible functional materials. As a fundamental electromechanical coupling material in numerous applications, novel piezoelectric materials with a feature of degradability and desired electrical and mechanical properties are being developed for future wearable and implantable bioelectronics. These bioelectronics can be easily integrated with biological systems for applications, including sensing physiological signals, diagnosing medical problems, opening the blood-brain barrier, and stimulating healing or tissue growth. Therefore, the generation of piezoelectricity from natural and synthetic bioresorbable polymers has drawn great attention in the research field. Herein, the significant and recent advancements in biodegradable piezoelectric materials, including natural and synthetic polymers, their principles, advanced applications, and challenges for medical uses, are reviewed thoroughly. The degradation methods of these piezoelectric materials through in vitro and in vivo studies are also investigated. These improvements in biodegradable piezoelectric materials and microsystems could enable new applications in the biomedical field. In the end, potential research opportunities regarding the practical applications are pointed out that might be significant for new materials research.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Emin Istif
- Department of Mechanical EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Faculty of Engineering and Natural SciencesKadir Has UniversityCibaliIstanbul34083Turkey
| | - Seyed Nasir Hosseini Karimi
- Koç University Research Center for Translational Research (KUTTAM)Rumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Levent Beker
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Department of Mechanical EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Koç University Research Center for Translational Research (KUTTAM)Rumelifeneri YoluSarıyerIstanbul34450Turkey
| |
Collapse
|
10
|
Dong RP, Zhang Q, Yang LL, Cheng XL, Zhao JW. Clinical management of dural defects: A review. World J Clin Cases 2023; 11:2903-2915. [PMID: 37215425 PMCID: PMC10198091 DOI: 10.12998/wjcc.v11.i13.2903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Dural defects are common in spinal and cranial neurosurgery. A series of complications, such as cerebrospinal fluid leakage, occur after rupture of the dura. Therefore, treatment strategies are necessary to reduce or avoid complications. This review comprehensively summarizes the common causes, risk factors, clinical complications, and repair methods of dural defects. The latest research progress on dural repair methods and materials is summarized, including direct sutures, grafts, biomaterials, non-biomaterial materials, and composites formed by different materials. The characteristics and efficacy of these dural substitutes are reviewed, and these materials and methods are systematically evaluated. Finally, the best methods for dural repair and the challenges and future prospects of new dural repair materials are discussed.
Collapse
Affiliation(s)
- Rong-Peng Dong
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qi Zhang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Xue-Liang Cheng
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jian-Wu Zhao
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
11
|
Pant B, Park M, Kim AA. Electrospun Nanofibers for Dura Mater Regeneration: A Mini Review on Current Progress. Pharmaceutics 2023; 15:pharmaceutics15051347. [PMID: 37242589 DOI: 10.3390/pharmaceutics15051347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Dural defects are a common problem in neurosurgical procedures and should be repaired to avoid complications such as cerebrospinal fluid leakage, brain swelling, epilepsy, intracranial infection, and so on. Various types of dural substitutes have been prepared and used for the treatment of dural defects. In recent years, electrospun nanofibers have been applied for various biomedical applications, including dural regeneration, due to their interesting properties such as a large surface area to volume ratio, porosity, superior mechanical properties, ease of surface modification, and, most importantly, similarity with the extracellular matrix (ECM). Despite continuous efforts, the development of suitable dura mater substrates has had limited success. This review summarizes the investigation and development of electrospun nanofibers with particular emphasis on dura mater regeneration. The objective of this mini-review article is to give readers a quick overview of the recent advances in electrospinning for dura mater repair.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Allison A Kim
- Department of Healthcare Management, Woosong University, Daejon 34606, Republic of Korea
| |
Collapse
|
12
|
Wang Y, Guo Q, Wang W, Wang Y, Fang K, Wan Q, Li H, Wu T. Potential use of bioactive nanofibrous dural substitutes with controlled release of IGF-1 for neuroprotection after traumatic brain injury. NANOSCALE 2022; 14:18217-18230. [PMID: 36468670 DOI: 10.1039/d2nr06081g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For patients suffering from traumatic brain injury (TBI), the closure of dural defects after decompressive craniectomy is the prerequisite to restoring normal physiological functions. It is also an urgent challenge to provide a neuroprotection effect against the primary and secondary nerve damage during long-term recovery. To solve these issues, we herein develop a class of bioactive, nanofibrous dural substitutes that can long-term release insulin-like growth factor 1 (IGF-1) for improving the survival and neurite outgrowth of neural cells after TBI. Such dural substitutes were polycaprolactone (PCL) nanofibers encapsulated with hyaluronic acid methacryloyl (HAMA)/IGF-1 by blend or coaxial electrospinning techniques, achieving bioactive PCL/HAMA/IGF nanofibrous dural substitutes with different release profiles of IGF-1. The nanofibrous dural substitutes exhibited good mechanical properties and hydrophobicity, which prevent cerebrospinal fluid leakage, maintain normal intracranial pressure, and avoid external impact on the brain. We also found that the viability and neurite outgrowth of SH-SY5Y cells and primary neurons were significantly enhanced after neurite transection or oxygen and glucose deprivation treatment. Taken together, such PCL/HAMA/IGF nanofibrous dural substitutes hold promising potential to provide neuroprotection effects after primary and secondary nerve damage in TBI, which would bring significant benefits to the field of neurosurgery involving the use of artificial dura mater.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Qingxia Guo
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wei Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| | - Yuanfei Wang
- Department of Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Huanting Li
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Tong Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| |
Collapse
|
13
|
Qian J, Su L, He J, Ruan R, Wang J, Wang Z, Xiao P, Liu C, Cao Y, Li W, Zhang J, Song J, Yang H. Dual-Modal Imaging and Synergistic Spinal Tumor Therapy Enabled by Hierarchical-Structured Nanofibers with Cascade Release and Postoperative Anti-adhesion. ACS NANO 2022; 16:16880-16897. [PMID: 36136320 DOI: 10.1021/acsnano.2c06848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most treatments for spinal cancer are accompanied by serious side effects including subsequent tumor recurrence, spinal cord compression, and tissue adhesion, thus a highly effective treatment is crucial for preserving spinal and neurological functionalities. Herein, trilayered electrospun doxorubicin@bovine serum albumin/poly(ε-caprolactone)/manganese dioxide (DOX@BSA/PCL/MnO2) nanofibers with excellent antiadhesion ability, dual glutathione/hydrogen peroxide (GSH/H2O2) responsiveness, and cascade release of Mn2+/DOX was fabricated for realizing an efficient spinal tumor therapy. In detail, Fenton-like reactions between MnO2 in the fibers outermost layer and intra-/extracellular glutathione within tumors promoted the first-order release of Mn2+. Then, sustained release of DOX from the fibers' core layer occurred along with the infiltration of degradation fluid. Such release behavior avoided toxic side effects of drugs, regulated inflammatory tumor microenvironment, amplified tumor elimination efficiency through synergistic chemo-/chemodynamic therapies, and inhibited recurrence of spinal tumors. More interestingly, magnetic resonance and photoacoustic dual-modal imaging enabled visualizations of tumor therapy and material degradation in vivo, achieving rapid pathological analysis and diagnosis. On the whole, such versatile hierarchical-structured nanofibers provided a reference for rapid and potent theranostic of spinal cancer in future clinical translations.
Collapse
Affiliation(s)
- Jiaqi Qian
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Lichao Su
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jingjing He
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ziyi Wang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Peijie Xiao
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Yang Cao
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Weidong Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
14
|
Jabbari F, Babaeipour V, Bakhtiari S. Bacterial cellulose-based composites for nerve tissue engineering. Int J Biol Macromol 2022; 217:120-130. [PMID: 35820488 DOI: 10.1016/j.ijbiomac.2022.07.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Nerve injuries and neurodegenerative disorders are very serious and costly medical challenges. Damaged nerve tissue may not be able to heal and regain its function, and scar tissue may restrict nerve cell regeneration. In recent years, new electroactive biomaterials have attracted widespread attention in the neural tissue engineering field. Bacterial cellulose (BC) due to its unique properties such as good mechanical properties, high water retention, biocompatibility, high crystallinity, large surface area, high purity, very fine network, and inability to absorb in the human body due to cellulase deficiency, can be considered a promising treatment for neurological injuries and disorders that require long-term support. However, BC lacks electrical activity, but can significantly improve the nerve regeneration rate by combining with conductive structures. Electrical stimulation has been shown to be an effective means of increasing the rate and accuracy of nerve regeneration. Many factors, such as the intensity and pattern of electrical current, have positive effects on cellular activity, including cell adhesion, proliferation, migration and differentiation, and cell-cell/tissue/molecule/drug interaction. This study discusses the importance and essential role of BC-based biomaterials in neural tissue regeneration and the effects of electrical stimulation on cellular behaviors.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Samaneh Bakhtiari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
15
|
A dural substitute based on oxidized quaternized guar gum/porcine peritoneal acellular matrix with improved stability, antibacterial and anti-adhesive properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
17
|
Khan S, Ul-Islam M, Ullah MW, Zhu Y, Narayanan KB, Han SS, Park JK. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int J Biol Macromol 2022; 209:9-30. [PMID: 35381280 DOI: 10.1016/j.ijbiomac.2022.03.191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/20/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Bacterial cellulose (BC), an extracellular polysaccharide, is a versatile biopolymer due to its intrinsic physicochemical properties, broad-spectrum applications, and remarkable achievements in different fields, especially in the biomedical field. Presently, the focus of BC-related research is on the development of scaffolds containing other materials for in-vitro and in-vivo biomedical applications. To this end, prime research objectives concern the biocompatibility of BC and the development of three-dimensional (3D) BC-based scaffolds. This review summarizes the techniques used to develop 3D BC scaffolds and discusses their potential merits and limitations. In addition, we discuss the various biomedical applications of BC-based scaffolds for which the 3D BC matrix confers desired structural and conformational features. Overall, this review provides comprehensive coverage of the idea, requirements, synthetic strategies, and current and prospective applications of 3D BC scaffolds, and thus, should be useful for researchers working with polysaccharides, biopolymers, or composite materials.
Collapse
Affiliation(s)
- Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Youlong Zhu
- Materials Science Institute, The PCFM and GDHPRC Laboratory, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Choi SM, Rao KM, Zo SM, Shin EJ, Han SS. Bacterial Cellulose and Its Applications. Polymers (Basel) 2022; 14:polym14061080. [PMID: 35335411 PMCID: PMC8949969 DOI: 10.3390/polym14061080] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
The sharp increase in the use of cellulose seems to be in increasing demand in wood; much more research related to sustainable or alternative materials is necessary as a lot of the arable land and natural resources use is unsustainable. In accordance, attention has focused on bacterial cellulose as a new functional material. It possesses a three-dimensional, gelatinous structure consisting of cellulose with mechanical and thermal properties. Moreover, while a plant-originated cellulose is composed of cellulose, hemi-cellulose, and lignin, bacterial cellulose attributable to the composition of a pure cellulose nanofiber mesh spun is not necessary in the elimination of other components. Moreover, due to its hydrophilic nature caused by binding water, consequently being a hydrogel as well as biocompatibility, it has only not only used in medical fields including artificial skin, cartilage, vessel, and wound dressing, but also in delivery; some products have even been commercialized. In addition, it is widely used in various technologies including food, paper, textile, electronic and electrical applications, and is being considered as a highly versatile green material with tremendous potential. However, many efforts have been conducted for the evolution of novel and sophisticated materials with environmental affinity, which accompany the empowerment and enhancement of specific properties. In this review article, we summarized only industry and research status regarding BC and contemplated its potential in the use of BC.
Collapse
Affiliation(s)
- Soon Mo Choi
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Sun Mi Zo
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Eun Joo Shin
- Department of Organic Materials and Polymer Engineering, Dong-A University, Busan 49315, Korea
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| | - Sung Soo Han
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| |
Collapse
|
19
|
Jankau J, Błażyńska‐Spychalska A, Kubiak K, Jędrzejczak-Krzepkowska M, Pankiewicz T, Ludwicka K, Dettlaff A, Pęksa R. Bacterial Cellulose Properties Fulfilling Requirements for a Biomaterial of Choice in Reconstructive Surgery and Wound Healing. Front Bioeng Biotechnol 2022; 9:805053. [PMID: 35223815 PMCID: PMC8873821 DOI: 10.3389/fbioe.2021.805053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Although new therapeutic approaches for surgery and wound healing have recently made a great progress, there is still need for application of better and use novel methods to enhance biocompatibility as well as recovery and healing process. Bacterial Cellulose (BC) is natural cellulose in the form of nanostructure which has the advantages of being used in human body. The medical application of BC in reconstructive, cardiac and vascular surgery as well as wound healing is still under development, but without proved success of repetitive results. A review of studies on Bacterial Cellulose (BC) since 2016 was performed, taking into account the latest reports on the clinical use of BC. In addition, data on the physicochemical properties of BC were used. In all the works, satisfactory results of using Bacterial Cellulose were obtained. In all presented studies various BC implants demonstrated their best performance. Additionally, the works show that BC has the capacity to reach physiological as well as mechanical properties of relevance for various tissue replacement and can be produced in surgeons as well as patient specific expectations such as ear frames, vascular tubes or heart valves as well as wound healing dressings. Results of those experiments conform to those of previous reports utilizing ADM (acellular dermal matrix) and demonstrate that the use of BC has no adverse effects such as ulceration or extrusion and possesses expected properties. Based on preliminary animal as well as the few clinical data BC fittings are promising implants for various reconstructive applications since they are biocompatible with properties allowing blood flow, attach easily to wound bed and remain in place until donor site is healed properly. Additionally, this review shows that BC can be fabricated into patient specific shapes and size, with capability to reach mechanical properties of relevance for heart valve, ear, and muscle replacement. Bacterial cellulose appears, as shown in the above review, to be one of the materials that allow extensive application in the reconstruction after soft tissue defects. Review was created to show the needs of surgeons and the possibilities of using BC through the eyes and knowledge of biotechnologists.
Collapse
Affiliation(s)
- Jerzy Jankau
- Department of Plastic Surgery Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Jerzy Jankau,
| | | | - Katarzyna Kubiak
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | | | - Teresa Pankiewicz
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | - Karolina Ludwicka
- Institute of Molecular and Industrial Biotechnology Lodz, University of Technology, Łódź, Poland
| | | | - Rafał Pęksa
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Li J, Tian J, Li C, Chen L, Zhao Y. A hydrogel spinal dural patch with potential anti-inflammatory, pain relieving and antibacterial effects. Bioact Mater 2022; 14:389-401. [PMID: 35386815 PMCID: PMC8964987 DOI: 10.1016/j.bioactmat.2022.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
CSFL caused by spinal dural defect is a common complication of spinal surgery, which need repair such as suture or sealants. However, low intracranial pressure symptoms, wound infection and prolonged hospital associated with pin-hole leakage or loose seal effect were often occurred after surgical suture or sealants repair. Stable, pressure resistance and high viscosity spinal dural repair patch in wet environment without suture or sealants was highly needed. Herein, a bioactive patch composed of alginate and polyacrylamide hydrogel matrix cross-linked by calcium ions, and chitosan adhesive was proposed. This fabricated patch exhibits the capabilities of promoting defect closure and good tight seal ability with the bursting pressure is more than 790 mm H2O in wet environment. In addition, the chitosan adhesive layer of the patch could inhibit the growth of bacterial in vitro, which is meaningful for the postoperative infection. Furthermore, the patch also significantly reduced the expression of GFAP, IBA-1, MBP, TNF-α, and COX-2 in early postoperative period in vivo study, exerting the effects of anti-inflammatory, analgesic and adhesion prevention. Thus, the bioactive patch expected to be applied in spinal dural repair with the good properties of withstanding high pressure, promoting defect closure and inhibiting postoperative infection. A self-adhesive spinal dural patch that can be applied directly by pressing. A spinal dural patch maintains more than 790 mm H2O sealing pressure in a wet environment. A spinal dural patch with potential anti-inflammatory, analgesic and anti-bacterial properties.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxu Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Longyun Chen
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Corresponding author.
| |
Collapse
|
21
|
Wang J, Li K, Xu J, Liu M, Li P, Li X, Fan Y. A biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair. J Mater Chem B 2021; 9:7821-7834. [PMID: 34586141 DOI: 10.1039/d1tb00948f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dura mater is an essential barrier to protect the brain tissue and the dural defects caused by accidents can lead to serious complications. Various materials have been applied to dural repair, but it remains a challenge to perfectly match the structure and properties of the natural dura mater. Small intestinal submucosa has been developed for dural repair because of its excellent biocompatibility and biological activity, but its application is tremendously limited by the rapid degradation rate. Chitosan has also been broadly investigated in tissue repair, but the traditional chitosan hydrogels exhibit poor mechanical properties. A nanofiber chitosan hydrogel can be constructed based on an alkaline solvent, which is equipped with surprisingly high strength. Therefore, based on the bilayer structure of the natural dura mater, a biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure was fabricated, which possessed a microporous structure in the upper sponge and a nanofiber structure in the lower hydrogel. The degradation rate was remarkably reduced compared with that of the small intestinal submucosa in the enzymatic degradation experiment in vitro. Meanwhile, the chitosan nanofibers brought high mechanical strength to the bilayer scaffold. Moreover, the hierarchical micro/nano structure and the active factors in the small intestinal submucosa have a fantastic effect on promoting the proliferation of fibroblasts and vascular endothelial cells. The bilayer scaffold showed good histocompatibility in the experiment of in vitro subcutaneous implantation in rats. Thus, the biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with micro/nano structure simulates the structure of the natural dura mater and possesses properties with excellent performance, which has high practical value for dural repair.
Collapse
Affiliation(s)
- Jingxi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Kun Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Xiaoming Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
22
|
Jin S, Pu Y, Guo Z, Zhu W, Li S, Zhou X, Gao W, He B. A double-layer dura mater based on poly(caprolactone- co-lactide) film and polyurethane sponge: preparation, characterization, and biodegradation study. J Mater Chem B 2021; 9:3863-3873. [PMID: 33928320 DOI: 10.1039/d1tb00454a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synthetic, biodegradable polymers hold great potential in dura mater substitution. In this study, a dura mater-mimetic double-layer film@sponge composite was developed. The composite contains a poly(caprolactone-co-lactide) (PCLA) film and polyurethane (PU) sponge, which simulates the hard and soft layers of dura mater, respectively. PCLA films were prepared by a solution-casting method and showed excellent mechanical properties and tolerance to water. PU sponge was hydrophilic and had a high water-absorption rate (about 500%). The double-layer composite (film@sponge) integrated the good mechanical properties of the films and the good water absorption of the sponge. The excellent biocompatibility and biodegradability of the PCLA film@PU sponge composites were verified by in vitro degradation and cytotoxicity study and the in vivo implantation in the back of rats. Importantly, the film@sponge composite had a suitable degradation rate and good biocompatibility, holding potential in the field of dural repair.
Collapse
Affiliation(s)
- Shu Jin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xi Zhou
- Ningbo Baoting Biotechnology Co., Ltd, Ningbo 315001, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
23
|
He W, Cao G, Gan X, Fan Y, Pei B, Li X. Evaluation methods for mechanical biocompatibility of hernia repair meshes: respective characteristics, application scope and future perspectives. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021; 13:1826-1840. [DOI: 10.1016/j.jmrt.2021.05.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
24
|
Liu W, Wang X, Su J, Jiang Q, Wang J, Xu Y, Zheng Y, Zhong Z, Lin H. In vivo Evaluation of Fibrous Collagen Dura Substitutes. Front Bioeng Biotechnol 2021; 9:628129. [PMID: 33681163 PMCID: PMC7930396 DOI: 10.3389/fbioe.2021.628129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Dura substitutes are applied in duraplasty to repair lost or damaged dura. Collagen-based dura substitutes are mainstream products in both the US and Chinese markets. In this study, dura substitute devices with potential dura regeneration ability are evaluated. The dura substitutes are composed of fibrous type I collagen that were purified from bovine tendon. Physical and chemical characterization demonstrated that the tested dura substitute has desirable porous scaffolding structures and is composed of highly purified type I collagen. The collagen dura substitutes were further investigated in vivo with a rabbit model for 6 months to evaluate their safety and performance to repair and regenerate dura. No inflammation or infection was observed during the course of in vivo study. The integration of the collagen dura substitutes with surrounding tissue was normal as compared to native tissue. The macroscopic and microscopic histological assessments of the sampled animal tissue showed that the damaged dura were regenerated. The collagen dura substitutes were resorbed between 3 and 6 months along with newly regenerated dura. Both tissue adhesion and dura repair was the worst in blank control group as compared to those in the collagen dura substitutes. Taken together, regenerative collagen dura substitutes demonstrated with suitable physicochemical properties. The in vivo evaluation in a rabbit model further demonstrated the safety and performance of such substitutes for dura repair and regeneration.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xin Wang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlei Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Qingsong Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|