1
|
Sharma A, Sharma D, Lin H, Zhou H(J, Zhao F. Self-Exfoliated Guanidinium Covalent Organic Nanosheets as High-Capacity Curcumin Carrier. Biomimetics (Basel) 2024; 9:709. [PMID: 39590281 PMCID: PMC11592196 DOI: 10.3390/biomimetics9110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Drug administration is commonly used to treat chronic wounds but faces challenges such as poor bioavailability, instability, and uncontrollable release. Existing drug delivery platforms are limited by chemical instability, poor functionality, complex synthesis, and toxic by-products. Presently, research efforts are focused on developing novel drug carriers to enhance drug efficacy. Guanidinium Covalent Organic Nanosheets (gCONs) offer promising alternatives due to their high porosity, surface area, loading capacity, and ability to provide controlled, sustained, and target-specific drug delivery. Herein, we successfully synthesized self-exfoliated gCONs using a Schiff base condensation reaction and embedded curcumin (CUR), a polyphenolic pleiotropic drug with antioxidant and anti-inflammatory properties, via the wet impregnation method. The BET porosimeter exhibited the filling of gCON pores with CUR. Morphological investigations revealed the formation of sheet-like structures in gCON. Culturing human dermal fibroblasts (hDFs) on gCON demonstrated cytocompatibility even at a concentration as high as 1000 µg/mL. Drug release studies demonstrated a controlled and sustained release of CUR over an extended period of 5 days, facilitated by the high loading capacity of gCON. Furthermore, the inherent antioxidant and anti-inflammatory properties of CUR were preserved after loading into the gCON, underscoring the potential of CUR-loaded gCON formulation for effective therapeutic applications. Conclusively, this study provides fundamental information relevant to the performance of gCONs as a drug delivery system and the synergistic effect of CUR and CONs addressing issues like drug bioavailability and instability.
Collapse
Affiliation(s)
- Archita Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (D.S.)
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (D.S.)
| | - Hengyu Lin
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (H.L.); (H.Z.)
| | - Hongcai (Joe) Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (H.L.); (H.Z.)
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (D.S.)
| |
Collapse
|
2
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
3
|
Salazar J, Hidalgo-Rosa Y, Burboa PC, Wu YN, Escalona N, Leiva A, Zarate X, Schott E. UiO-66(Zr) as drug delivery system for non-steroidal anti-inflammatory drugs. J Control Release 2024; 370:392-404. [PMID: 38663750 DOI: 10.1016/j.jconrel.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The toxicity for the human body of non-steroidal anti-inflammatory drugs (NSAIDs) overdoses is a consequence of their low water solubility, high doses, and facile accessibility to the population. New drug delivery systems (DDS) are necessary to overcome the bioavailability and toxicity related to NSAIDs. In this context, UiO-66(Zr) metal-organic framework (MOF) shows high porosity, stability, and load capacity, thus being a promising DDS. However, the adsorption and release capability for different NSAIDs is scarcely described. In this work, the biocompatible UiO-66(Zr) MOF was used to study the adsorption and release conditions of ibuprofen, naproxen, and diclofenac using a theoretical and experimental approximation. DFT results showed that the MOF-drug interaction was due to an intermolecular hydrogen bond between protons of the groups in the defect sites, (μ3 - OH, and - OH2) and a lone pair of oxygen carboxyl functional group of the NSAIDs. Also, the experimental results suggest that the solvent where the drug is dissolved affects the adsorption process. The adsorption kinetics are similar between the drugs, but the maximum load capacity differs for each drug. The release kinetics assay showed a solvent dependence kinetics whose maximum liberation capacity is affected by the interaction between the drug and the material. Finally, the biological assays show that none of the systems studied are cytotoxic for HMVEC. Additionally, the wound healing assay suggests that the UiO-66(Zr) material has potential application on the wound healing process. However, further studies should be done.
Collapse
Affiliation(s)
- Javier Salazar
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Yoan Hidalgo-Rosa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Facultad de Ingeniería, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago 7500000, Chile
| | - Pia C Burboa
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China
| | - Néstor Escalona
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Macul, Santiago 8320000, Chile; Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8320000, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile.
| |
Collapse
|
4
|
Pederneira N, Aina PO, Rownaghi AA, Rezaei F. Performance of MIL-101(Cr) and MIL-101(Cr)-Pore Expanded as Drug Carriers for Ibuprofen and 5-Fluorouracil Delivery. ACS APPLIED BIO MATERIALS 2024; 7:1041-1051. [PMID: 38190506 DOI: 10.1021/acsabm.3c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Metal-organic frameworks (MOFs) have been extensively investigated as nanocarriers for drug delivery applications owing to their remarkable surface area and porosity, which allow for impregnation of large quantities of drugs with fast pharmacokinetics. In this work, we developed a pore-expanded version of MIL-101(Cr), MIL-101(Cr)-P, and assessed its potential as a carrier for ibuprofen and 5-fluorouracil drugs along with its regular MIL-101(Cr) analogue. The pore expansion strategy gave rise to a higher surface area and mesopore volume for MIL-101(Cr)-P relative to regular MIL-101(Cr). The characterization results revealed successful incorporation of 30, 50, and 80 wt % of both drugs within the MOF structure. Upon incorporation of species, the surface area and porosity of the two MOF carriers decreased drastically; however, the drug-loaded MOFs still retained some degree of porosity, even at high drug loadings. For both drugs, the delivery experiments conducted in phosphate-buffered saline (PBS) showed that MIL-101(Cr)-P possessed better pharmacokinetic behavior than MIL-101(Cr) by delivering higher amounts of drug at all three loadings and exhibiting much faster release rates. Such behavior was originated from large mesopores that were created during pore expansion, providing diffusional pathways for efficient delivery of the drugs. The highest rate constant obtained by fitting the release kinetics to the Higuchi model was found to be 0.44 h-1/2 for the release of 30 wt % 5-fluorouracil from MIL-101(Cr)-P. The findings of this study highlight the role of tuning physiochemical properties of MOFs in improving their pharmacokinetic behavior as drug carriers.
Collapse
Affiliation(s)
- Neila Pederneira
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Peter O Aina
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, Florida 33124, United States
| | - Ali A Rownaghi
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave.,Cleveland, Ohio 44115, United States
| | - Fateme Rezaei
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, Florida 33124, United States
| |
Collapse
|
5
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Lim YY, Zaidi AMA, Miskon A. Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy. Molecules 2023; 28:2920. [PMID: 37049685 PMCID: PMC10096333 DOI: 10.3390/molecules28072920] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
7
|
Zinc(II) Carboxylate Coordination Polymers with Versatile Applications. Molecules 2023; 28:molecules28031132. [PMID: 36770799 PMCID: PMC9918918 DOI: 10.3390/molecules28031132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
This review considers the applications of Zn(II) carboxylate-based coordination polymers (Zn-CBCPs), such as sensors, catalysts, species with potential in infections and cancers treatment, as well as storage and drug-carrier materials. The nature of organic luminophores, especially both the rigid carboxylate and the ancillary N-donor bridging ligand, together with the alignment in Zn-CBCPs and their intermolecular interaction modulate the luminescence properties and allow the sensing of a variety of inorganic and organic pollutants. The ability of Zn(II) to act as a good Lewis acid allowed the involvement of Zn-CBCPs either in dye elimination from wastewater through photocatalysis or in pathogenic microorganism or tumor inhibition. In addition, the pores developed inside of the network provided the possibility for some species to store gaseous or liquid molecules, as well as to deliver some drugs for improved treatment.
Collapse
|
8
|
Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02385-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Maranescu B, Visa A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int J Mol Sci 2022; 23:4458. [PMID: 35457275 PMCID: PMC9026733 DOI: 10.3390/ijms23084458] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
In the last decade, metal organic frameworks (MOFs) have shown great prospective as new drug delivery systems (DDSs) due to their unique properties: these materials exhibit fascinating architectures, surfaces, composition, and a rich chemistry of these compounds. The DSSs allow the release of the active pharmaceutical ingredient to accomplish a desired therapeutic response. Over the past few decades, there has been exponential growth of many new classes of coordination polymers, and MOFs have gained popularity over other identified systems due to their higher biocompatibility and versatile loading capabilities. This review presents and assesses the most recent research, findings, and challenges associated with the use of MOFs as DDSs. Among the most commonly used MOFs for investigated-purpose MOFs, coordination polymers and metal complexes based on synthetic and natural polymers, are well known. Specific attention is given to the stimuli- and multistimuli-responsive MOFs-based DDSs. Of great interest in the COVID-19 pandemic is the use of MOFs for combination therapy and multimodal systems.
Collapse
Affiliation(s)
- Bianca Maranescu
- Coriolan Dragulescu Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania
| | - Aurelia Visa
- Coriolan Dragulescu Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania
| |
Collapse
|
10
|
Lawson S, Rownaghi AA, Rezaei F. Combined Ibuprofen and Curcumin Delivery Using Mg-MOF-74 as a Single Nanocarrier. ACS APPLIED BIO MATERIALS 2022; 5:265-271. [PMID: 35014812 DOI: 10.1021/acsabm.1c01067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have been extensively used as drug delivery platforms because of their considerable textural properties and physiochemical tunability. However, most medicinal treatments often administer multiple therapeutic pharmaceuticals simultaneously and combined drug delivery over a single MOF carrier has not been extensively developed. As such, in this study we implemented Mg-MOF-74, which is known to have rapid pharmacokinetic properties, for the combined delivery of ibuprofen and curcumin to demonstrate the proof-of-concept for dual-drug delivery over this previously unexplored MOF. To this end, 30 wt % total drug loading of two drugs was impregnated at various ratios (25:5 ibuprofen-curcumin, 20:5 ibuprofen-curcumin, 15:15 ibuprofen-curcumin, 10:20 ibuprofen-curcumin, and 5:25 ibuprofen-curcumin), and the drug delivery performance of the materials was assessed from 0 to 24 h in phosphate-buffered saline (PBS) solution using high-performance liquid chromatography (HPLC). The experiments revealed that all five ratios of ibuprofen-curcumin loadings can effectively deliver both compounds; however, elevating the curcumin loading beyond 10 wt % decreases the drug loading efficiency for ibuprofen and can also inhibit ibuprofen release. Nevertheless, because Mg-MOF-74 was able to successfully deliver both compounds, this study serves as a promising proof-of-concept for dual-drug delivery from a single MOF carrier. In this regard, the work demonstrated herein expands the use of MOFs for drug delivery applications and can be used to supplement drug administration via orally ingested tablets.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
11
|
Xie W, Deng W, Hu J, Gai Y, Li X, Zhang J, Long D, Qiao S, Jiang F. Construction of bimetallic FeCo–SA/DABCO nanosheets by modulating the electronic structure for improved electrocatalytic oxygen evolution. CrystEngComm 2022. [DOI: 10.1039/d2ce01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For energy conversion and storage, the electrochemical oxygen evolution process (OER) is the crucial half-reaction process.
Collapse
Affiliation(s)
- Wenshuo Xie
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Junbo Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yuping Gai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xiang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jingjing Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Dewu Long
- Key Laboratory in Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fei Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
12
|
Lawson S, Siemers A, Kostlenick J, Al-Naddaf Q, Newport K, Rownaghi AA, Rezaei F. Mixing Mg-MOF-74 with Zn-MOF-74: A Facile Pathway of Controlling the Pharmacokinetic Release Rate of Curcumin. ACS APPLIED BIO MATERIALS 2021; 4:6874-6880. [PMID: 35006987 DOI: 10.1021/acsabm.1c00585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, metal-organic frameworks (MOFs) have been widely employed as potential drug-delivery platforms; however, most studies have focused on the initial aspects of material development and have made little progress toward using MOFs as a means of controlling the pharmacokinetic rate of drug delivery. Nevertheless, it was recently determined that MOFs with highly soluble metal centers impart faster pharmacokinetic properties, so it stands to reason that combining two MOFs with different metal center solubilities could be used to control the pharmacokinetic release rate. To this end, in this study we varied the ratio of Mg-MOF-74 and Zn-MOF-74 between 80:20, 60:40, 40:60, and 20:80 wt % Mg:Zn to control the pharmacokinetic release rate of 30 wt % curcumin. The drug loading was characterized by using Fourier transform infrared spectroscopy and N2 physisorption, where it was confirmed that curcumin was impregnated successfully. More importantly, the drug delivery experiments in phosphate buffered saline from 0 to 24 h at 37.4 °C revealed that increasing the Mg-MOF-74 concentration enhanced both the raw amount of curcumin delivered and the pharmacokinetic rate of drug delivery. Specifically looking at the rate of drug delivery, drug diffusion constants of 0.17, 0.23, 0.24, and 0.26 h1/2 were calculated for the 20:80, 40:60, 60:40, and 80:20 Mg-Zn-MOF-74 samples, respectively, which indicated the profound relationship between the Mg-MOF-74 loading and the rate of curcumin delivery. In this regard, this study successfully demonstrated a potential pathway of controlling the pharmacokinetic rate of drug release from MOFs which can be considered a promising advancement in pharmacological medicine.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Andrew Siemers
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Jason Kostlenick
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Qasim Al-Naddaf
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Kyle Newport
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
13
|
Zhao H, Zhao Y, Liu D. pH and H 2S Dual-Responsive Magnetic Metal-Organic Frameworks for Controlling the Release of 5-Fluorouracil. ACS APPLIED BIO MATERIALS 2021; 4:7103-7110. [PMID: 35006942 DOI: 10.1021/acsabm.1c00710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Along with the increasing cancer incidence, developing suitable drug delivery systems (DDSs) is becoming urgent to control drug release and further enhance therapeutic efficiency. Herein, a Fe-Zn bimetallic MOF-derived ferromagnetic nanomaterial was synthesized by a one-step method. The successful preparation of ferromagnetic Fe-ZIF-8 was verified by scanning electron microscopy, powder X-ray diffraction, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and physical property measurement system characterizations. Furthermore, the release behaviors of 5-FU from the ferromagnetic carrier were investigated in a simulative cancer microenvironment of PBS buffer solution (PBS = phosphate-buffered saline, pH = 5.8) and NaHS solution. The vehicle in PBS solution of pH = 5.8 and NaHS solution of 500 μM can rapidly release 5-FU with the cumulative release percentages of 68 and 36%, respectively, within two hundred minutes. The release mechanism in the weak acid environment can be mainly attributed to the decomposition of the Fe-ZIF-8. However, the strong interaction between Zn and Fe atoms in Fe-ZIF-8 and the S atom in H2S plays an important role in the release process in the simulated H2S cancer microenvironment. The investigation of release kinetic models indicates that the 5-FU release in the PBS solutions and NaHS solution of 500 μM can be accurately fitted by a second-degree polynomial model and first-order model, respectively. In addition, the decomposition products, zinc, iron, and 2-MeIM, are endogenous and show low toxicity values [LD50 (Zn) = 0.35 g·kg-1, LD50 (Fe) = 30 g·kg-1, and LD50 (2-MeIM) = 1.4 g·kg-1]. Therefore, the low-toxicity, pH and H2S dual-stimuli-responsive, and ferromagnetic nature make the obtained Fe-ZIF-8 an ideal candidate in the field of bioactive molecule delivery.
Collapse
Affiliation(s)
- Huifang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Yingjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
14
|
Wang Z, Peng Y, Shi C, Wang L, Chen X, Wu W, Wu X, Zhu Y, Zhang J, Cheng G, Zhuang S. Qualitative and quantitative recognition of chiral drugs based on terahertz spectroscopy. Analyst 2021; 146:3888-3898. [PMID: 34042921 DOI: 10.1039/d1an00500f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral drugs are drugs with chiral or asymmetric centres in their molecular structure. Different enantiomers of the same chiral drug have noticeably different pharmacological activities and pharmacokinetic properties. However, its distinction has been perplexing scholars for many years in the qualitative and quantitative detection of antagonistic drugs. Conventional detection methods, such as polarimetry, circular dichroism, and high-performance liquid chromatography, are time consuming, cause sample loss and have cumbersome operations, and they can be applied only to the sampling method. In this paper, we propose a fast, accurate, qualitative and quantitative method for the study of chiral drugs based on linearly polarized terahertz (THz) spectroscopy and imaging technology. Taking ibuprofen as an example, based on the THz absorption spectra of the enantiomers RS-ibuprofen, (R)-(-)-ibuprofen, and (S)-(+)-ibuprofen, their characteristic peak frequencies, peak amplitude differences and peak area differences were extracted to qualitatively and quantitatively distinguish and identify the three substances. THz spectral imaging provides more intuitive results than those obtained from previous methods. In quantitative identification, the stability and detection accuracy of THz spectroscopy are much greater than those of Raman spectroscopy (88.8-99.8% vs. 21.42-94.62%, respectively). The qualitative recognition accuracy was 100%, and the quantitative recognition standard deviation was less than 0.01, and it is also a non-destructive testing method. Furthermore, the above method combined with principal component analysis (PCA) and the support vector machine (SVM) neural network classification algorithm was applied to the analysis of other chiral drugs. These results are significant for the rapid, accurate and non-destructive identification of chiral drugs.
Collapse
Affiliation(s)
- Zefang Wang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| | - Yan Peng
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| | - Chengjun Shi
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| | - Liping Wang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| | - Xiaohong Chen
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| | - Wanwan Wu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| | - Xu Wu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| | - Yiming Zhu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| | - Jingchen Zhang
- Shanghai Center for Drug Evaluation and Inspection, P. R. China.
| | - Guiliang Cheng
- Shanghai Center for Drug Evaluation and Inspection, P. R. China.
| | - Songlin Zhuang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab. of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai, P. R. China.
| |
Collapse
|
15
|
Lawson S, Newport K, Pederniera N, Rownaghi AA, Rezaei F. Curcumin Delivery on Metal-Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family. ACS APPLIED BIO MATERIALS 2021; 4:3423-3432. [PMID: 35014426 DOI: 10.1021/acsabm.1c00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have gained considerable attention as drug delivery platforms over the past decade owing to their tunable physiochemical properties, biodiversity, and capability to encapsulate sizable active compound loadings. Nevertheless, many fundamental properties pertaining to MOFs' pharmacokinetic performances as drug carriers have been poorly investigated. One such property is the relationship between the MOF metal center solubility and drug release rate. In this study, we investigated this relationship within the M-MOF-74 family by impregnating 30 or 50 wt % curcumin on either Mg-, Ni-, Zn-, or Co-MOF-74. The drug delivery performance of the materials was assessed in phosphate buffered saline solution by high-performance liquid chromatography over a time period of 0-24 h. From these experiments, it was determined that the 30 wt % curcumin loading led to increased drug delivery and kinetics compared to the 50 wt % loading regardless of the metal center, as the lower drug concentration did not hinder diffusion from the MOF pores. As such, the optimal curcumin loading within the M-MOF-74 family was concluded to be greater than 30 wt % but less than 50 wt %. These experiments also revealed that using Mg-MOF-74 as a drug carrier produced a twofold enhancement in the release rate from 0.15 to 0.30 h1/2 compared to the other three metal centers, where Mg-MOF-74's improved pharmacokinetics were attributed to the increased group II Mg solubility compared to Ni, Co, or Zn transition metals. On the basis of these findings, it was concluded that to promote rapid pharmacokinetics, it is essential to use MOFs with more soluble metal centers to promote dissolution of the nanocarrier. While this study focused on M-MOF-74, we expect that this conclusion has implications to other crystallites as well.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Kyle Newport
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Neila Pederniera
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali Asghar Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
16
|
Sirajunnisa P, George LH, Manoj N, Prathapan S, Sailaja GS. Lawsone derived Zn( ii) and Fe( iii) metal organic frameworks with pH dependent emission for controlled drug delivery. NEW J CHEM 2021. [DOI: 10.1039/d1nj01913a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent biocompatible porous carriers have been investigated as suitable probes for drug delivery and sensing applications owing to their intrinsic fluorescence and high surface area originating from their porous structure complemented with tunable pore size/surface properties.
Collapse
Affiliation(s)
- P. Sirajunnisa
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- India
| | - Liz Hannah George
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- India
| | - N. Manoj
- Department of Applied Chemistry
- Cochin University of Science and Technology
- India
- Inter University Centre for Nanomaterials and Devices (IUCND)
- Cochin University of Science and Technology
| | - S. Prathapan
- Department of Applied Chemistry
- Cochin University of Science and Technology
- India
| | - G. S. Sailaja
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- India
- Inter University Centre for Nanomaterials and Devices (IUCND)
- Cochin University of Science and Technology
| |
Collapse
|
17
|
MIL-88A grown in-situ on graphitic carbon nitride (g-C3N4) as a novel sorbent: Synthesis, characterization, and high-performance of tetracycline removal and mechanism. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|