1
|
Huang Y, Liang L, Kong Y, Li Z, Song W, Ding L, Du J, Zhang M, Zhang C, Li J, Zhu D, Liu Q, Tan Y, Feng Y, Guo X, Fu X, Huang S. Unleashing the Healing Power: 3D Bioprinting Mimics Hypoxia to Supercharge Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14888-14902. [PMID: 40025872 DOI: 10.1021/acsami.4c20131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Mesenchymal stem cells (MSCs) play a critical role in stem cell therapy due to their tissue-mimicking abilities. However, conventional 2D culture conditions often lead to the loss of their native hypoxic niche, potentially limiting their therapeutic efficacy. 3D bioprinting offers a method to recreate intricate biological environments by integrating cells with extracellular matrices. Therefore, it is essential to adapt 3D printing techniques to accurately replicate the MSCs' ecological niche, facilitating the integration of 3D printing technology into clinical applications. In this study, we optimized MSCs' therapeutic capabilities using the performed cellular aggregates (PCA) bioprinting method. We observed that the printed matrix creates a hypoxic microenvironment, resulting in a significant increase in the level of production of several paracrine signaling molecules and immunomodulatory factors by MSCs. Furthermore, MSCs exhibited enhanced stemness and proliferative capacity in the early stages of the culture. RNA-seq analysis revealed that these changes in cellular behavior were associated with the hypoxic environment created during the bioprinting procedure of MSCs. By optimizing the bioink composition and printing parameters, we successfully simulated the in vivo hypoxic microenvironment, leading to notable improvements in MSC characteristics and immunomodulatory capacity. RNA sequencing analysis further confirmed the activation of hypoxia signaling pathways, which are crucial for stem cell properties. These findings offer valuable insights into leveraging 3D bioprinting for MSC-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Yuyan Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Liting Liang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yi Kong
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Zhao Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Wei Song
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Lin Ding
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Jinpeng Du
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Mengde Zhang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Chao Zhang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianjun Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Dongzhen Zhu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Qinghua Liu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yaxin Tan
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu Feng
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Xu Guo
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- College of Graduate, Tianjin Medical University, Tianjin 300203, China
| | - Xiaobing Fu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- School of Medicine, Nankai University, Tianjin 300071, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- College of Graduate, Tianjin Medical University, Tianjin 300203, China
| | - Sha Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department of PLA General Hospital, and PLA Medical College, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| |
Collapse
|
2
|
Liu Y, Wang Z, Ma T, Gao Y, Chen W, Ye Z, Li Z. Differentiation of mesenchymal stem cells towards lens epithelial stem cells based on three-dimensional bio-printed matrix. Front Cell Dev Biol 2025; 12:1526943. [PMID: 39834393 PMCID: PMC11743933 DOI: 10.3389/fcell.2024.1526943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The high risks of traumatic cataract treatments promoted the development of the concept of autologous lens regeneration. Biochemical cues can influence the cellular behavior of stem cells, and in this case, biophysical cues may be the important factors in producing rapid activation of cellular behavior. Here we bio-printed mesenchymal stem cells (MSCs) using a commonly used bioink sodium alginate-gelatin blends, and investigated the induction effect of MSC differentiation towards lens epithelial stem cells (LESCs) under a combination of biochemical cues and biophysical cues. It was found that biochemical cues in the porous three-dimensional (3D) matrix constructed using bioink sodium alginate-gelatin blends for bio-printing did not reduce the cell viability of loaded MSCs in the matrix by scanning electron microscope (SEM) observation and cell viability detection. Loaded MSCs in the matrix were consistently upregulated in the expression of proteins and genes involved in phenotypes and development signaling pathways of LESCs, as detected by polymerase chain reaction (PCR) with the support of biochemical cues. These results indicated that biophysical cues could rapidly activate the cellular behavior of MSCs differentiation, and biochemical cues could continuously induce MSCs differentiation towards LESCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, PLA General Hospital and PLA Medical College, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
3
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
4
|
Panda G, Barik D, Dash M. Understanding Matrix Stiffness in Vinyl Polymer Hydrogels: Implications in Bone Tissue Engineering. ACS OMEGA 2024; 9:17891-17902. [PMID: 38680357 PMCID: PMC11044159 DOI: 10.1021/acsomega.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
Matrix elasticity helps to direct bone cell differentiation, impact healing processes, and modify extracellular matrix deposition, all of which are required for tissue growth and maintenance. In this work, we evaluated the role of inorganic nanocrystals or mineral inducers such as nanohydroxyapatite, alkaline phosphatase, and nanoclay also known as montmorillonite deposited on vinyl-based hydrogels in generating matrices with different stiffness and their role in cell differentiation. Poly-2-(dimethylamino)ethyl methacrylate (PD) and poly-2-hydroxypropylmethacrylamide (PH) are the two types of vinyl polymers chosen for preparing hydrogels via thermal cross-linking. The hydrogels exhibited porosity, which decreased with an increase in stiffness. Each of the compositions is non-cytotoxic and maintains the viability of pre-osteoblasts (MC3T3-E1) and human bone marrow mesenchymal stem cells (hBMSCs). The PD hydrogels in the presence of ALP showed the highest mineralization ability confirmed through the alizarin assay and a better structural environment for their use as scaffolds for tissue engineering. The study reveals that understanding such interactions can generate hydrogels that can serve as efficient 3D models to study biomineralization.
Collapse
Affiliation(s)
| | - Debyashreeta Barik
- Institute
of Life Sciences, Nalco
Square, Bhubaneswar, Odisha 751023, India
- School
of Biotechnology, Kalinga Institute of Industrial
Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Mamoni Dash
- Institute
of Life Sciences, Nalco
Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
5
|
Pangjantuk A, Kaokaen P, Kunhorm P, Chaicharoenaudomrung N, Noisa P. 3D culture of alginate-hyaluronic acid hydrogel supports the stemness of human mesenchymal stem cells. Sci Rep 2024; 14:4436. [PMID: 38396088 PMCID: PMC10891100 DOI: 10.1038/s41598-024-54912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
The three-dimensional (3D) cell culture system is being employed more frequently to investigate cell engineering and tissue repair due to its close mimicry of in vivo microenvironments. In this study, we developed natural biomaterials, including hyaluronic acid, alginate, and gelatin, to mimic the creation of a 3D human mesenchymal stem cell (hMSC) extracellular environment and selected hydrogels with high proliferation capacity for 3D MSC culture. Human mesenchymal stem cells were encapsulated within hydrogels, and an investigation was conducted into the effects on cell viability and proliferation, stemness properties, and telomere activity compared to the 2D monolayer culture. Hydrogel characterization, cell proliferation, Live/Dead cell viability assay, gene expression, telomere relative length, and MSC stemness-related proteins by immunofluorescence staining were examined. The results showed that 3D alginate-hyaluronic acid (AL-HA) hydrogels increased cell proliferation, and the cells were grown as cellular spheroids within hydrogels and presented a high survival rate of 77.36% during the culture period of 14 days. Furthermore, the 3D alginate-hyaluronic acid (AL-HA) hydrogels increased the expression of stemness-related genes (OCT-4, NANOG, SOX2, and SIRT1), tissue growth and development genes (YAP and TAZ), and cell proliferation gene (Ki67) after culture for 14 days. Moreover, the telomere activity of the 3D MSCs was enhanced, as indicated by the upregulation of the human telomerase reverse transcriptase gene (hTERT) and the relative telomere length (T/S ratio) compared to the 2D monolayer culture. Altogether, these data suggest that the 3D alginate-hyaluronic acid (AL-HA) hydrogels could serve as a promising material for maintaining stem cell properties and might be a suitable carrier for tissue engineering proposals.
Collapse
Affiliation(s)
- Amorn Pangjantuk
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
6
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
7
|
Lemarié L, Dargar T, Grosjean I, Gache V, Courtial EJ, Sohier J. Human Induced Pluripotent Spheroids' Growth Is Driven by Viscoelastic Properties and Macrostructure of 3D Hydrogel Environment. Bioengineering (Basel) 2023; 10:1418. [PMID: 38136009 PMCID: PMC10740696 DOI: 10.3390/bioengineering10121418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Stem cells, particularly human iPSCs, constitute a powerful tool for tissue engineering, notably through spheroid and organoid models. While the sensitivity of stem cells to the viscoelastic properties of their direct microenvironment is well-described, stem cell differentiation still relies on biochemical factors. Our aim is to investigate the role of the viscoelastic properties of hiPSC spheroids' direct environment on their fate. To ensure that cell growth is driven only by mechanical interaction, bioprintable alginate-gelatin hydrogels with significantly different viscoelastic properties were utilized in differentiation factor-free culture medium. Alginate-gelatin hydrogels of varying concentrations were developed to provide 3D environments of significantly different mechanical properties, ranging from 1 to 100 kPa, while allowing printability. hiPSC spheroids from two different cell lines were prepared by aggregation (⌀ = 100 µm, n > 1 × 104), included and cultured in the different hydrogels for 14 days. While spheroids within dense hydrogels exhibited limited growth, irrespective of formulation, porous hydrogels prepared with a liquid-liquid emulsion method displayed significant variations of spheroid morphology and growth as a function of hydrogel mechanical properties. Transversal culture (adjacent spheroids-laden alginate-gelatin hydrogels) clearly confirmed the separate effect of each hydrogel environment on hiPSC spheroid behavior. This study is the first to demonstrate that a mechanically modulated microenvironment induces diverse hiPSC spheroid behavior without the influence of other factors. It allows one to envision the combination of multiple formulations to create a complex object, where the fate of hiPSCs will be independently controlled by their direct microenvironment.
Collapse
Affiliation(s)
- Lucas Lemarié
- SEGULA Technologies, 69100 Villeurbanne, France;
- 3d.FAB, CNRS UMR 5246, ICBMS (Institute of Molecular and Supramolecular Chemistry and Biochemistry), Université Lyon 1, 69622 Villeurbanne, France;
- CNRS UMR 5305, LBTI (Tissue Biology and Therapeutic Engineering Laboratory), 69007 Lyon, France
| | - Tanushri Dargar
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Isabelle Grosjean
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Vincent Gache
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Edwin J. Courtial
- 3d.FAB, CNRS UMR 5246, ICBMS (Institute of Molecular and Supramolecular Chemistry and Biochemistry), Université Lyon 1, 69622 Villeurbanne, France;
| | - Jérôme Sohier
- CNRS UMR 5305, LBTI (Tissue Biology and Therapeutic Engineering Laboratory), 69007 Lyon, France
| |
Collapse
|
8
|
Zhang M, Chen Y, Yu D, Zhong W, Zhang J, Ma P. Elucidating dynamic cell lineages and gene networks in time-course single cell differentiation. ARTIFICIAL INTELLIGENCE IN THE LIFE SCIENCES 2023; 3:100068. [PMID: 37426065 PMCID: PMC10328540 DOI: 10.1016/j.ailsci.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Single cell RNA sequencing (scRNA-seq) technologies provide researchers with an unprecedented opportunity to exploit cell heterogeneity. For example, the sequenced cells belong to various cell lineages, which may have different cell fates in stem and progenitor cells. Those cells may differentiate into various mature cell types in a cell differentiation process. To trace the behavior of cell differentiation, researchers reconstruct cell lineages and predict cell fates by ordering cells chronologically into a trajectory with a pseudo-time. However, in scRNA-seq experiments, there are no cell-to-cell correspondences along with the time to reconstruct the cell lineages, which creates a significant challenge for cell lineage tracing and cell fate prediction. Therefore, methods that can accurately reconstruct the dynamic cell lineages and predict cell fates are highly desirable. In this article, we develop an innovative machine-learning framework called Cell Smoothing Transformation (CellST) to elucidate the dynamic cell fate paths and construct gene networks in cell differentiation processes. Unlike the existing methods that construct one single bulk cell trajectory, CellST builds cell trajectories and tracks behaviors for each individual cell. Additionally, CellST can predict cell fates even for less frequent cell types. Based on the individual cell fate trajectories, CellST can further construct dynamic gene networks to model gene-gene relationships along the cell differentiation process and discover critical genes that potentially regulate cells into various mature cell types.
Collapse
Affiliation(s)
| | - Yongkai Chen
- Department of Statistics, University of Georgia, Athens, GA 30602, United Stated
| | - Dingyi Yu
- Department of Industrial Engineering, Center for Statistical Science, Tsinghua University, Beijing, China
| | - Wenxuan Zhong
- Department of Statistics, University of Georgia, Athens, GA 30602, United Stated
| | - Jingyi Zhang
- Department of Industrial Engineering, Center for Statistical Science, Tsinghua University, Beijing, China
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA 30602, United Stated
| |
Collapse
|
9
|
Lv J, Liu X, Zhou Y, Cheng F, Chen H, Li S, Wang D, Zhou L, Wang Z, Zhou N, Chen J, Huang B. YAP Inactivation by Soft Mechanotransduction Relieves MAFG for Tumor Cell Dedifferentiation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0215. [PMID: 37614365 PMCID: PMC10443527 DOI: 10.34133/research.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Solid tumor cells live in a highly dynamic mechanical microenvironment. How the extracellular-matrix-generated mechanotransduction regulates tumor cell development and differentiation remains an enigma. Here, we show that a low mechanical force generated from the soft matrix induces dedifferentiation of moderately stiff tumor cells to soft stem-cell-like cells. Mechanistically, integrin β8 was identified to transduce mechano-signaling to trigger tumor cell dedifferentiation by recruiting RhoGDI1 to inactivate RhoA and subsequently Yes-associated protein (YAP). YAP inactivation relieved the inhibition of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG), allowing MAFG to transactivate the stemness genes NANOG, SOX2, and NESTIN. Inactivation also restored β8 expression, thereby forming a closed mechanical loop. Importantly, MAFG expression is correlated with worse prognosis. Our findings provide mechanical insights into the regulation of tumor cell dedifferentiation, which has therapeutic implications for exploring innovative strategies to attack malignancies.
Collapse
Affiliation(s)
- Jiadi Lv
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Xiaohan Liu
- Department of Histology and Embryology, Basic Medical College,
China Medical University, Shenyang, Liaoning 110122, China
| | - Yabo Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Feiran Cheng
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Haoran Chen
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Shunshun Li
- Department of Immunology, Basic Medical College,
China Medical University, Shenyang, Liaoning 110122, China
| | - Dianheng Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Li Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Zhenfeng Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Nannan Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Jie Chen
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
- Department of Biochemistry & Molecular Biology, Tongji Medical College,
Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
11
|
Wang Y, Zhang F, Yao B, Hou L, Li Z, Song W, Kong Y, Tan Y, Fu X, Huang S. Notch4 participates in mesenchymal stem cell-induced differentiation in 3D-printed matrix and is implicated in eccrine sweat gland morphogenesis. BURNS & TRAUMA 2023; 11:tkad032. [PMID: 37397510 PMCID: PMC10309082 DOI: 10.1093/burnst/tkad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Background Eccrine sweat gland (SG) plays a crucial role in thermoregulation but exhibits very limited regenerative potential. Although SG lineage-restricted niches dominate SG morphogenesis and benefit SG regeneration, rebuilding niches in vivo is challenging for stem cell therapeutic applications. Hence, we attempted to screen and tune the critical niche-responding genes that dually respond to both biochemical and structural cues, which might be a promising strategy for SG regeneration. Methods An artificial SG lineage-restricted niche consisting of mouse plantar dermis homogenates (i.e. biochemical cues) and 3D architecture (i.e. structural cues) was built in vitro by using an extrusion-based 3D bioprinting approach. Mouse bone marrow-derived mesenchymal stem cells (MSCs) were then differentiated into the induced SG cells in the artificial SG lineage-restricted niche. To decouple biochemical cues from structural cues, the transcriptional changes aroused by pure biochemical cues, pure structural cues and synergistic effects of both cues were analyzed pairwise, respectively. Notably, only niche-dual-responding genes that are differentially expressed in response to both biochemical and structural cues and participate in switching MSC fates towards SG lineage were screened out. Validations in vitro and in vivo were respectively conducted by inhibiting or activating the candidate niche-dual-responding gene(s) to explore the consequent effects on SG differentiation. Results Notch4 is one of the niche-dual-responding genes that enhanced MSC stemness and promoted SG differentiation in 3D-printed matrix in vitro. Furthermore, inhibiting Notch4 specifically reduced keratin 19-positive epidermal stem cells and keratin 14-positive SG progenitor cells, thus further delaying embryonic SG morphogenesis in vivo. Conclusions Notch4 not only participates in mouse MSC-induced SG differentiation in vitro but is also implicated in mouse eccrine SG morphogenesis in vivo.
Collapse
Affiliation(s)
| | | | | | - Linhao Hou
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, P. R. China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, P. R. China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, P. R. China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, P. R. China
| | - Yaxin Tan
- College of Graduate, Tianjin Medical University, 22 Qi Xiang Tai Road, Heping District, Tianjin, 300070, P.R. China
| | | | - Sha Huang
- Correspondence. Xiaobing Fu, ; Sha Huang,
| |
Collapse
|
12
|
Tian B, Liu J, Guo S, Li A, Wan JB. Macromolecule-based hydrogels nanoarchitectonics with mesenchymal stem cells for regenerative medicine: A review. Int J Biol Macromol 2023:125161. [PMID: 37270118 DOI: 10.1016/j.ijbiomac.2023.125161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The role of regenerative medicine in clinical therapies is becoming increasingly vital. Under specific conditions, mesenchymal stem cells (MSCs) are capable of differentiating into mesoblastema (i.e., adipocytes, chondrocytes, and osteocytes) and other embryonic lineages. Their application in regenerative medicine has attracted a great deal of interest among researchers. To maximize the potential applications of MSCs, materials science could provide natural extracellular matrices and provide an effective means to understand the various mechanisms of differentiation for the growth of MSCs. Pharmaceutical fields are represented among the research on biomaterials by macromolecule-based hydrogel nanoarchitectonics. Various biomaterials have been used to prepare hydrogels with their unique chemical and physical properties to provide a controlled microenvironment for the culture of MSCs, laying the groundwork for future practical applications in regenerative medicine. This article currently describes and summarizes the sources, characteristics, and clinical trials of MSCs. In addition, it describes the differentiation of MSCs in various macromolecule-based hydrogel nanoarchitectonics and highlights the preclinical studies of MSCs-loaded hydrogel materials in regenerative medicine conducted over the past few years. Finally, the challenges and prospects of MSC-loaded hydrogels are discussed, and the future development of macromolecule-based hydrogel nanoarchitectonics is outlined by comparing the current literature.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Aiqin Li
- Department of Day-care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
13
|
Yuan X, Duan X, Enhejirigala, Li Z, Yao B, Song W, Wang Y, Kong Y, Zhu S, Zhang F, Liang L, Zhang M, Zhang C, Kong D, Zhu M, Huang S, Fu X. Reciprocal interaction between vascular niche and sweat gland promotes sweat gland regeneration. Bioact Mater 2023; 21:340-357. [PMID: 36185745 PMCID: PMC9483744 DOI: 10.1016/j.bioactmat.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
|
14
|
Hrynevich A, Li Y, Cedillo-Servin G, Malda J, Castilho M. (Bio)fabrication of microfluidic devices and organs-on-a-chip. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
15
|
Chen Z, Du W, Lv Y. Zonally Stratified Decalcified Bone Scaffold with Different Stiffness Modified by Fibrinogen for Osteochondral Regeneration of Knee Joint Defect. ACS Biomater Sci Eng 2022; 8:5257-5272. [PMID: 36335510 DOI: 10.1021/acsbiomaterials.2c00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Articular cartilage is generally known to be a complex tissue with multiple layers. Each layer has different composition, structure, and mechanical properties, making regeneration after knee joint defects a troubling clinical problem. A novel integrated stratified decalcified bone matrix (SDBM) scaffold with different stiffness to mimic the mechanical properties of articular cartilage is presented herein. This SDBM scaffold was modified using fibrinogen (Fg) (Fg + SDBM) to enhance its vascularization ability and improve its repair efficiency for osteochondral defects of knee joints. A Fg + SDBM scaffold with different elastic modulus in each layer (high-stiffness DBM (HDBM) layer, 174.208 ± 44.330 MPa (Fg + HDBM); medium-stiffness DBM (MDBM) layer, 21.214 ± 6.922 MPa (Fg + MDBM); and low-stiffness DBM (LDBM) layer, 0.678 ± 0.269 MPa (Fg + LDBM)) was constructed by controlling the stratified decalcification time with layered embedding paraffin (0, 3, and 5 days). The low- and medium-stiffness layers of the Fg + SDBM scaffold remarkably promoted the cartilage differentiation of bone marrow mesenchymal stem cells in vitro. Subcutaneous transplantation and rabbit knee joint osteochondral defect repair experiments revealed that the low- and medium-stiffness layers of the Fg + SDBM scaffold exhibited wonderful cartilage capacity, whereas the high-stiffness layer of Fg + SDBM scaffold exhibited good osteogenesis ability. Furthermore, this scaffold could promote blood vessel formation in subchondral bone area. This study presents a feasible strategy for osteochondral regeneration of defective knee joints, which is of great clinical value for tissue repair.
Collapse
Affiliation(s)
- Zhenyin Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjiang Du
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| |
Collapse
|
16
|
Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater 2022; 17:178-194. [PMID: 35386443 PMCID: PMC8965032 DOI: 10.1016/j.bioactmat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Extrusion-based bioprinting (EBB) holds potential for regenerative medicine. However, the widely-used bioinks of EBB exhibit some limitations for skin regeneration, such as unsatisfactory bio-physical (i.e., mechanical, structural, biodegradable) properties and compromised cellular compatibilities, and the EBB-based bioinks with therapeutic effects targeting cutaneous wounds still remain largely undiscussed. In this review, the printability considerations for skin bioprinting were discussed. Then, current strategies for improving the physical properties of bioinks and for reinforcing bioinks in EBB approaches were introduced, respectively. Notably, we highlighted the applications and effects of current EBB-based bioinks on wound healing, wound scar formation, vascularization and the regeneration of skin appendages (i.e., sweat glands and hair follicles) and discussed the challenges and future perspectives. This review aims to provide an overall view of the applications, challenges and promising solutions about the EBB-based bioinks for cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Yuzhen Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, Datong, Shanxi, 037006, PR China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin, 300071, PR China
| | - Bin Yao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
| |
Collapse
|
17
|
Townsend JM, Sanders ME, Kiyotake EA, Detamore MS. Independent Control of Molecular Weight, Concentration, and Stiffness of Hyaluronic Acid Hydrogels. Biomed Mater 2022; 17. [PMID: 36044886 DOI: 10.1088/1748-605x/ac8e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022]
Abstract
Hyaluronic acid (HA) hydrogels have been used for a multitude of applications, perhaps most notably for tissue engineering and regenerative medicine, owing to the versatility of the polymer and its tunable nature. Various groups have investigated the impact of hydrogel parameters (e.g., molecular weight, concentration, stiffness, etc.) in vitro and in vivo to achieve desired material performance characteristics. A limitation in the literature to date has been that altering one hydrogel parameter (a 'manipulated variable') to achieve a given hydrogel characteristic (a 'controlled variable') changes two variables at a time (e.g., altering molecular weight and/or concentration to investigate cell response to stiffness). Therefore, if cell responses differ, it may be possible that more than one variable caused the changes in observed responses. In the current study, we leveraged thiol-ene click chemistry with a crosslinker to develop a method that minimizes material performance changes and permitted multiple material properties to be independently held constant to evaluate a single variable at a time. Independent control was accomplished by tuning the concentration of crosslinker to achieve an effectively constant stiffness for different HA hydrogel molecular weights and polymer concentrations. Specific formulations were thereby identified that enabled the molecular weight (76 - 1550 kDa), concentration (2 - 10%), or stiffness (~1 - 350 kPa) to be varied while the other two were held constant, a key technical achievement. The response of rat mesenchymal stem cells to varying molecular weight, concentration, and stiffness demonstrated consistent upregulation of osteocalcin gene expression. The methodology presented to achieve independent control of hydrogel parameters may potentially be adopted by others for alternative hydrogel polymers, cell types, or cell culture medium compositions to minimize confounding variables in experimental hydrogel designs.
Collapse
Affiliation(s)
- Jakob M Townsend
- Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma, 73019, UNITED STATES
| | - Megan E Sanders
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 925 North Way 56th Terrace, Gainesville, 32611-7011, UNITED STATES
| | - Emi A Kiyotake
- Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma, 73019, UNITED STATES
| | - Michael S Detamore
- Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma, 73019, UNITED STATES
| |
Collapse
|
18
|
Wang Y, Yao B, Duan X, Li J, Song W, Enhejirigala, Li Z, Yuan X, Kong Y, Zhang Y, Fu X, Huang S. Notch1 down-regulation in lineage-restricted niches is involved in the development of mouse eccrine sweat glands. J Mol Histol 2022; 53:857-867. [PMID: 36006534 DOI: 10.1007/s10735-022-10098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Eccrine sweat gland (SG) restrictedly exists in mouse foot pads indicating that mouse plantar dermis (PD) contains the SG lineage-restricted niches. However, it is still unclear how these niches can affect stem cell fate towards SG. In this study, we tried to find the key cues by which stem cells sense and interact with the SG lineage-specific niches both in vivo and in vitro. Firstly, we used transcriptomics RNA sequencing analysis to screen differentially expressed genes between SG cells and epidermal stem cells (ES), and used proteomic analysis to screen differentially expressed proteins between PD and dorsal dermis (DD). Notch1 was found differentially expressed in both gene and protein levels, and was closely related to SG morphogenesis based on Gene Ontology (GO) enrichment analysis. Secondly, the spatial-temporal changes of Notch1 during embryonic and post-natal development of SG were detected. Thirdly, mouse mesenchymal stem cells (MSCs) were introduced into SG-like cells in vitro in order to further verify the possible roles of Notch1. Results revealed that Notch1 was continuously down-regulated along with the process of SG morphogenesis in vivo, and also along with the process that MSCs differentiated into SG-like cells in vitro. Hence, we suggest that Notch1 possibly acts as with roles of "gatekeeper" during SG development and regulates the interactions between stem cells and the SG lineage-specific niches. This study might help for understanding mechanisms of embryonic SG organogenesis.
Collapse
Affiliation(s)
- Yuzhen Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, 037006, Datong, Shanxi, P. R. China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, P. R. China
| | - Xianlan Duan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,School of Medicine, Nankai University, 94 Wei Jing Road, 300071, Tianjin, P.R. China
| | - Jianjun Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, 28 Fu Xing Road, 100853, Beijing, P.R. China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China
| | - Enhejirigala
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Institute of Basic Medical Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China.,College of Graduate, Tianjin Medical University, 22 Qi Xiang Tai Road, 300050, Tianjin, P.R. China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,School of Medicine, Nankai University, 94 Wei Jing Road, 300071, Tianjin, P.R. China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of Clinical Laboratory, the First Medical Center, Chinese PLA General Hospital, 28 Fu Xing Road, 100853, Beijing, P.R. China
| | - Yijie Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.
| |
Collapse
|
19
|
Varaprasad K, Karthikeyan C, Yallapu MM, Sadiku R. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Int J Biol Macromol 2022; 212:561-578. [DOI: 10.1016/j.ijbiomac.2022.05.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
20
|
Wang H, Yu H, Zhou X, Zhang J, Zhou H, Hao H, Ding L, Li H, Gu Y, Ma J, Qiu J, Ma D. An Overview of Extracellular Matrix-Based Bioinks for 3D Bioprinting. Front Bioeng Biotechnol 2022; 10:905438. [PMID: 35646886 PMCID: PMC9130719 DOI: 10.3389/fbioe.2022.905438] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022] Open
Abstract
As a microenvironment where cells reside, the extracellular matrix (ECM) has a complex network structure and appropriate mechanical properties to provide structural and biochemical support for the surrounding cells. In tissue engineering, the ECM and its derivatives can mitigate foreign body responses by presenting ECM molecules at the interface between materials and tissues. With the widespread application of three-dimensional (3D) bioprinting, the use of the ECM and its derivative bioinks for 3D bioprinting to replicate biomimetic and complex tissue structures has become an innovative and successful strategy in medical fields. In this review, we summarize the significance and recent progress of ECM-based biomaterials in 3D bioprinting. Then, we discuss the most relevant applications of ECM-based biomaterials in 3D bioprinting, such as tissue regeneration and cancer research. Furthermore, we present the status of ECM-based biomaterials in current research and discuss future development prospects.
Collapse
Affiliation(s)
- Haonan Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Huaqing Yu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Xia Zhou
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Jilong Zhang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Hongrui Zhou
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Haitong Hao
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Lina Ding
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Huiying Li
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Yanru Gu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Junchi Ma
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Depeng Ma
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
21
|
Rajput M, Mondal P, Yadav P, Chatterjee K. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Int J Biol Macromol 2022; 202:644-656. [PMID: 35066028 DOI: 10.1016/j.ijbiomac.2022.01.081] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) bioprinting based on digital light processing (DLP) offers unique opportunities to prepare scaffolds that mimic the architecture and biomechanical properties of human tissues. Limited availability of biocompatible and biodegradable bioinks amenable for DLP-bioprinting is an impediment in this field. This study presents a bioink prepared from silk fibroin (SF) tailored for DLP bioprinting. Photocurable methacrylated-SF (SF-MA) was synthesized with 67.3% of methacrylation. Physical characterization of rheological and mechanical properties revealed that the 3D printed hydrogels of SF-MA (spanning from 10 to 25 wt%) exhibit bone tissue-like viscoelastic behavior and compressive modulus ranging from ≈12 kPa to ≈96 kPa. The gels exhibited favorable degradation (≈48 to 91% in 21 days). This SF-MA bioink afforded the printing of complex structures, with high precision. Pre-osteoblasts were successfully encapsulated in 3D bioprinted SF-MA hydrogels with high viability. 15% SF-MA DLP bioprinted hydrogels efficiently supported cell proliferation with favorable cell morphology and cytoskeletal organization. A progressive increase in cell-mediated calcium deposition up to 14 days confirmed the ability of the gels to drive osteogenesis, which was further augmented by soluble induction factors. This work demonstrates the potential of silk fibroin-derived bioinks for DLP-based 3D bioprinting of scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Monika Rajput
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Parul Yadav
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India.
| |
Collapse
|
22
|
Gao Q, Kim BS, Gao G. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks. Mar Drugs 2021; 19:708. [PMID: 34940707 PMCID: PMC8708555 DOI: 10.3390/md19120708] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022] Open
Abstract
Alginate is a natural polysaccharide that typically originates from various species of algae. Due to its low cost, good biocompatibility, and rapid ionic gelation, the alginate hydrogel has become a good option of bioink source for 3D bioprinting. However, the lack of cell adhesive moieties, erratic biodegradability, and poor printability are the critical limitations of alginate hydrogel bioink. This review discusses the pivotal properties of alginate hydrogel as a bioink for 3D bioprinting technologies. Afterward, a variety of advanced material formulations and biofabrication strategies that have recently been developed to overcome the drawbacks of alginate hydrogel bioink will be focused on. In addition, the applications of these advanced solutions for 3D bioprinting of tissue/organ mimicries such as regenerative implants and in vitro tissue models using alginate-based bioink will be systematically summarized.
Collapse
Affiliation(s)
- Qiqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626841, Kyungnam, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
- Department of Medical Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China
| |
Collapse
|
23
|
Engberg A, Stelzl C, Eriksson O, O'Callaghan P, Kreuger J. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting. Sci Rep 2021; 11:21547. [PMID: 34732783 PMCID: PMC8566469 DOI: 10.1038/s41598-021-00931-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Bioprinting is increasingly used to create complex tissue constructs for an array of research applications, and there are also increasing efforts to print tissues for transplantation. Bioprinting may also prove valuable in the context of drug screening for personalized medicine for treatment of diseases such as cancer. However, the rapidly expanding bioprinting research field is currently limited by access to bioprinters. To increase the availability of bioprinting technologies we present here an open source extrusion bioprinter based on the E3D motion system and tool changer to enable high-resolution multimaterial bioprinting. As proof of concept, the bioprinter is used to create collagen constructs using freeform reversible embedding of suspended hydrogels (FRESH) methodology, as well as multimaterial constructs composed of distinct sections of laminin and collagen. Data is presented demonstrating that the bioprinted constructs support growth of cells either seeded onto printed constructs or included in the bioink prior to bioprinting. This open source bioprinter is easily adapted for different bioprinting applications, and additional tools can be incorporated to increase the capabilities of the system.
Collapse
Affiliation(s)
- Adam Engberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christina Stelzl
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Davidov T, Efraim Y, Hayam R, Oieni J, Baruch L, Machluf M. Extracellular Matrix Hydrogels Originated from Different Organs Mediate Tissue-Specific Properties and Function. Int J Mol Sci 2021; 22:ijms222111624. [PMID: 34769054 PMCID: PMC8583810 DOI: 10.3390/ijms222111624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/29/2022] Open
Abstract
Porcine extracellular matrix (pECM)-derived hydrogels were introduced, in recent years, aiming to benefit the pECM’s microstructure and bioactivity, while controlling the biomaterial’s physical and mechanical properties. The use of pECM from different tissues, however, offers tissue-specific features that can better serve different applications. In this study, pECM hydrogels derived from cardiac, artery, pancreas, and adipose tissues were compared in terms of composition, structure, and mechanical properties. While major similarities were demonstrated between all the pECM hydrogels, their distinctive attributes were also identified, and their substantial effects on cell-ECM interactions were revealed. Furthermore, through comprehensive protein and gene expression analyses, we show, for the first time, that each pECM hydrogel supports the spontaneous differentiation of induced pluripotent stem cells towards the resident cells of its origin tissue. These findings imply that the origin of ECM should be carefully considered when designing a biomedical platform, to achieve a maximal bioactive impact.
Collapse
|
25
|
Li J, Zhang Y, Enhe J, Yao B, Wang Y, Zhu D, Li Z, Song W, Duan X, Yuan X, Fu X, Huang S. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112193. [PMID: 34082990 DOI: 10.1016/j.msec.2021.112193] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal cells (MSCs) are an attractive option as seed cells for bioprinting. However, loss of stemness and undesired differentiation reduces their effectiveness. In this study, 12 nm bioactive nanoparticles (BNPs) which could release silicon (Si) ions were used to enhance the properties of alginate/gelatin hydrogel bioink to maintain MSC stemness. By specifically leveraging biochemical signals of BNPs, bioink with defined stiffness towards osteogenic and adipogenic potential, independent of pore structure, were designed by incorporating with different concentration of BNPs. These bioink were characterized by printability, mechanical and rheological properties as well as osteogenic and adipogenic potentials. Notably, the effect of 2% BNPs addition in alginate/gelatin hydrogel on MSC stemness maintenance was confirmed by the expression of stemness markers. At higher concentrations of BNPs (5%), printability was impacted by the gelling process. We further confirmed the enhanced stemness maintenance by sweat gland lineage commitment of bioprinted MSCs in vitro. Overall, our study proved that alginate/gelatin hydrogel bioink reinforced by BNPs in the optimal concentrations could retain MSC stemness as well as support MSC growth and prolong the desired differentiation. These findings may provide a new approach to achieve the ideal therapeutic potential of MSCs in 3D bioprinting application.
Collapse
Affiliation(s)
- Jianjun Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China; Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, PR China
| | - Yijie Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China
| | - Jirigala Enhe
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China; College of Graduate, Tianjin Medical University, 22 Qi Xiang Tai Road, Tianjin 300050, PR China; Institute of Basic Medical Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China
| | - Yuzhen Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China; Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yun Zhong Road, Pingcheng District, Datong, Shanxi 037006, PR China
| | - Dongzhen Zhu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China
| | - Xianlan Duan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China; School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin 300071, PR China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China; School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin 300071, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing 100048, PR China.
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fu Cheng Road, Beijing 100048, PR China.
| |
Collapse
|
26
|
Prouvé E, Drouin B, Chevallier P, Rémy M, Durrieu MC, Laroche G. Evaluating Poly(Acrylamide-co-Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol Biosci 2021; 21:e2100069. [PMID: 33870650 DOI: 10.1002/mabi.202100069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Indexed: 11/09/2022]
Abstract
The aim of this study is to investigate polyacrylamide-based hydrogels stress relaxation and the subsequent impact on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different hydrogels are synthesized by varying the amount of cross-linker and the ratio between the monomers (acrylamide and acrylic acid), and characterized by compression tests. It has been found that hydrogels containing 18% of acrylic acid exhibit an average relaxation of 70%, while pure polyacrylamide gels show an average relaxation of 15%. Subsequently, hMSCs are cultured on two different hydrogels functionalized with a mimetic peptide of the bone morphogenetic protein-2 to enable cell adhesion and favor their osteogenic differentiation. Phalloidin staining shows that for a constant stiffness of 55 kPa, a hydrogel with a low relaxation (15%) leads to star-shaped cells, which is typical of osteocytes, while a hydrogel with a high relaxation (70%) presents cells with a polygonal shape characteristic of osteoblasts. Immunofluorescence labeling of E11, strongly expressed in early osteocytes, also shows a dramatically higher expression for cells cultured on the hydrogel with low relaxation (15%). These results clearly demonstrate that, by fine-tuning hydrogels stress relaxation, hMSCs differentiation can be directed toward osteoblasts, and even osteocytes, which is particularly rare in vitro.
Collapse
Affiliation(s)
- Emilie Prouvé
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada.,Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Bernard Drouin
- Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| | - Pascale Chevallier
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| | - Murielle Rémy
- Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Marie-Christine Durrieu
- Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Gaétan Laroche
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| |
Collapse
|
27
|
Baruffaldi D, Palmara G, Pirri C, Frascella F. 3D Cell Culture: Recent Development in Materials with Tunable Stiffness. ACS APPLIED BIO MATERIALS 2021; 4:2233-2250. [PMID: 35014348 DOI: 10.1021/acsabm.0c01472] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness.
Collapse
Affiliation(s)
- Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Gianluca Palmara
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Candido Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,Center for Sustainable Futures@Polito, Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| |
Collapse
|