1
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
2
|
Wei Z, Ji T, Zhou X, Guo J, Yu X, Liu H, Wang J. Synergistic Enhancement of Photocatalytic CO 2 Reduction by Built-in Electric Field/Piezoelectric Effect and Surface Plasmon Resonance via PVDF/CdS/Ag Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304202. [PMID: 37649232 DOI: 10.1002/smll.202304202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Photocatalytic reduction of CO2 using solar energy is an effective means to achieve carbon neutrality. However, the photocatalytic efficiency still requires improvements. In this study, polyvinylidene fluoride (PVDF) ferroelectric/piezoelectric nanofiber membranes are prepared by electrospinning. Cadmium sulfide (CdS) nanosheets are assembled in situ on the surface of PVDF based on coordination between F- and Cd2+ , and then Ag nanoparticles are deposited on CdS. Because of the synergistic effect between localized surface plasmon resonance of Ag nanoparticles and the built-in electric field of PVDF, the CO2 photocatalytic reduction efficiency using PVDF/CdS/Ag under visible light irradiation is significantly higher than that of any combination of CdS, CdS/Ag, or PVDF/CdS. Under micro-vibration to simulate air flow, the CO2 reduction efficiency of PVDF/CdS/Ag is three times higher than that under static conditions, reaching 240.4 µmol g-1 h-1 . The piezoelectric effect caused by micro-vibrations helps prevent the built-in electric field from becoming saturated with carriers and provides a continuous driving force for carrier separation.
Collapse
Affiliation(s)
- Zijun Wei
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Tuo Ji
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Xuemei Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, P. R. China
| | - Jingang Wang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
3
|
Wang Z, Li J, Qiao Y, Liu X, Zheng Y, Li Z, Shen J, Zhang Y, Zhu S, Jiang H, Liang Y, Cui Z, Chu PK, Wu S. Rapid Ferroelectric-Photoexcited Bacteria-Killing of Bi 4Ti 3O 12/Ti 3C 2T x Nanofiber Membranes. ADVANCED FIBER MATERIALS 2022; 5:484-496. [PMID: 36466134 PMCID: PMC9707173 DOI: 10.1007/s42765-022-00234-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 05/20/2023]
Abstract
In this study, an antibacterial nanofiber membrane [polyvinylidene fluoride/Bi4Ti3O12/Ti3C2T x (PVDF/BTO/Ti3C2T x )] is fabricated using an electrostatic spinning process, in which the self-assembled BTO/Ti3C2T x heterojunction is incorporated into the PVDF matrix. Benefiting from the internal electric field induced by the spontaneously ferroelectric polarization of BTO, the photoexcited electrons and holes are driven to move in the opposite direction inside BTO, and the electrons are transferred to Ti3C2T x across the Schottky interface. Thus, directed charge separation and transfer are realized through the cooperation of the two components. The recombination of electron-hole pairs is maximumly inhibited, which notably improves the yield of reactive oxygen species by enhancing photocatalytic activity. Furthermore, the nanofiber membrane with an optimal doping ratio exhibits outstanding visible light absorption and photothermal conversion performance. Ultimately, photothermal effect and ferroelectric polarization enhanced photocatalysis endow the nanofiber membrane with the ability to kill 99.61% ± 0.28% Staphylococcus aureus and 99.71% ± 0.16% Escherichia coli under 20 min of light irradiation. This study brings new insights into the design of intelligent antibacterial textiles through a ferroelectric polarization strategy. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-022-00234-8.
Collapse
Affiliation(s)
- Zhiying Wang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Jianfang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Yuqian Qiao
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
| | - Xiangmei Liu
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Hui Jiang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077 China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
4
|
Liu H, Xie J, Zhao J, Xue P, Wang R, Lv X, Sun S. Ionic‐liquid grafted poly(vinylidene fluoride) with
pH
responsiveness using as water treatment separation membranes for multi‐dye retention and adsorption. J Appl Polym Sci 2022. [DOI: 10.1002/app.53201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongxu Liu
- Engineering Research Center of Synthetic Resin and Special Fiber Ministry of Education, Changchun University of Technology Changchun China
| | - Junhao Xie
- Engineering Research Center of Synthetic Resin and Special Fiber Ministry of Education, Changchun University of Technology Changchun China
| | - Jingxuan Zhao
- Engineering Research Center of Synthetic Resin and Special Fiber Ministry of Education, Changchun University of Technology Changchun China
| | - Peng Xue
- Engineering Research Center of Synthetic Resin and Special Fiber Ministry of Education, Changchun University of Technology Changchun China
| | - Ruijia Wang
- Engineering Research Center of Synthetic Resin and Special Fiber Ministry of Education, Changchun University of Technology Changchun China
| | - Xue Lv
- Engineering Research Center of Synthetic Resin and Special Fiber Ministry of Education, Changchun University of Technology Changchun China
| | - Shulin Sun
- Engineering Research Center of Synthetic Resin and Special Fiber Ministry of Education, Changchun University of Technology Changchun China
| |
Collapse
|
5
|
|
6
|
Membrane patterning through horizontally aligned microchannels developed by sulfated chopped carbon fiber for facile permeability of blood plasma components in low-density lipoprotein apheresis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zhou H, Wang H, Liu Z, Yang H, Yuan C, Wang Y. Facilitated phase transformation of PVDF in its composite with an ionic liquid. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|