1
|
Wang D, Wang Z, Wang LC, Li Y, Chen H, Feng L, Shang J, Lu L, Li S, Wang H. Facile fabrication of biocompatible carbon dots from egg white by one-step neutralization heat reaction: a capillary array-based fluorimetric strategy for high-throughput detection of total iron ions in fish blood. Analyst 2025; 150:718-726. [PMID: 39836044 DOI: 10.1039/d4an01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Water-soluble and biocompatible protein carbon dots (P-CDs) were simply prepared from egg white by a rapid one-step neutralization heat reaction. Unexpectedly, the thus-fabricated P-CDs could present excitation-dependent tunable fluorescence that could be quenched specifically by Fe3+ and Fe2+ ions with obvious color changes. A high-throughput fluorimetric platform was thereby developed by coating the P-CDs onto a capillary array for detection of total iron ions in fish blood samples, with a linear concentration range of 0.25-60.00 μM and a detection limit of 0.085 μM. Moreover, it can allow for the fast evaluation of total iron ions in fish blood samples, showing recovery efficiencies of 97.25%-99.84%. Such a facile fabrication route for P-CDs from egg white by a rapid neutralization reaction may open a new door for preparing different CDs. More importantly, the developed fluorimetric method may be expected to have wide application in the fields of diagnosis of iron-related diseases, monitoring of environmental water, and ensuring aquatic product safety.
Collapse
Affiliation(s)
- Di Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
- Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, China
| | - Ziyi Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
- Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, China
| | - Lily Chen Wang
- Living Word High School Shanghai, 1250 Beisong Road, Minhang District, Shanghai 201111, China
| | - Yunyan Li
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
- Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, China
| | - Huilan Chen
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
- Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, China
| | - Luping Feng
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
- Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, China
| | - Jizhen Shang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
- Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, China
| | - Limin Lu
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330000, China
| | - Shuai Li
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
- Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
- Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, China
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
3
|
Lodha SR, Merchant JG, Pillai AJ, Gore AH, Patil PO, Nangare SN, Kalyankar GG, Shah SA, Shah DR, Patole SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024; 10:e41020. [PMID: 39759361 PMCID: PMC11697698 DOI: 10.1016/j.heliyon.2024.e41020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors. This review discusses the current scenario of the status of pharmaceuticals in the environment, limitations associated with traditional techniques employed for their detection, and benefits offered by CDs like easy surface modification and tunable optical properties for sensing applications. Several representative means by which CDs interact with other molecules such as inner filter effect (IFE), dynamic quenching (DQ), static quenching (SQ), Förster resonance energy transfer (FRET), among others, are also discussed along with co-referencing fluorophores to design sensors. Based on developments described herein, CDs-based sensors can be expected to sense pharmaceuticals ranging from nanogram to picogram, target real-time industrial and spiked sample analysis, etc., which provides direction for future research.
Collapse
Affiliation(s)
- Sandesh R. Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Jesika G. Merchant
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Arya J. Pillai
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Anil H. Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Pravin O. Patil
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N. Nangare
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Gajanan G. Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shailesh A. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Dinesh R. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
4
|
Mohammed SJ, Sidiq MK, Najmuldeen HH, Kayani KF, Kader DA, Aziz SB. A comprehensive review on nitrogen-doped carbon dots for antibacterial applications. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:114444. [DOI: 10.1016/j.jece.2024.114444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Pechnikova NA, Domvri K, Porpodis K, Istomina MS, Iaremenko AV, Yaremenko AV. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. AGGREGATE 2024. [DOI: 10.1002/agt2.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
ABSTRACTCarbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard‐to‐reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long‐term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry & Biotechnology University of Thessaly Volos Greece
- Laboratory of Chemical Engineering A’ Department of Chemical Engineering Faculty of Engineering Aristotle University of Thessaloniki Thessaloniki Greece
- Saint Petersburg Pasteur Institute Saint Petersburg Russia
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Histology‐Embryology School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Pathology Department George Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria S. Istomina
- Institute of Experimental Medicine Almazov National Medical Research Centre Saint‐Peterburg Russia
| | | | - Alexey V. Yaremenko
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Center for Nanomedicine Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
6
|
Yuan L, Shao C, Zhang Q, Webb E, Zhao X, Lu S. Biomass-derived carbon dots as emerging visual platforms for fluorescent sensing. ENVIRONMENTAL RESEARCH 2024; 251:118610. [PMID: 38442811 DOI: 10.1016/j.envres.2024.118610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Biomass-derived carbon dots (CDs) are non-toxic and fluorescently stable, making them suitable for extensive application in fluorescence sensing. The use of cheap and renewable materials not only improves the utilization rate of waste resources, but it is also drawing increasing attention to and interest in the production of biomass-derived CDs. Visual fluorescence detection based on CDs is the focus of current research. This method offers high sensitivity and accuracy and can be used for rapid and accurate determination under complex conditions. This paper describes the biomass precursors of CDs, including plants, animal remains and microorganisms. The factors affecting the use of CDs as fluorescent probes are also discussed, and a brief overview of enhancements made to the preparation process of CDs is provided. In addition, the application prospects and challenges related to biomass-derived CDs are demonstrated.
Collapse
Affiliation(s)
- Lili Yuan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| | - Qian Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Xianhui Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States.
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
7
|
Wang Y, Wei X, Su Y, Xu R, Song D, Ding L, Chen Y. Highly sensitive fluoroprobe for detecting Sudan dyes in paprika utilizing carbon dot-embedded zeolitic imidazolate framework-8. Food Chem 2024; 438:137975. [PMID: 37979265 DOI: 10.1016/j.foodchem.2023.137975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
In this manuscript, we synthesized CDs@ZIF-8 through a one-step, in-situ method by integrating green-emitting carbon dots (CDs) with zeolitic imidazolate framework-8 (ZIF-8). The resulting CDs@ZIF-8 was utilized as an ultrasensitive probe for detection, leveraging the inner filter effect. The analysis demonstrated the capability to detect Sudan dyes. Sudan I, for example, could be detected within a concentration range spanning from 0.25 to 70 μM, achieving a remarkable detection limit of 76.56 nM. This established method was effectively employed for detecting Sudan I in paprika. Compared with CDs, CDs@ZIF-8 exhibited a 3.32-fold increase in sensitivity and a wider detection range. This enhanced performance was attributed to the porous ZIF-8, which allowed for the enrichment of targets around CDs and avoided the aggregation of CDs. Additionally, embedding the CDs in ZIF-8 improved their pH stability. Our study provides a new approach for using CDs under limited conditions by leveraging metal-organic frameworks.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaofeng Wei
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yu Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Rui Xu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanhua Chen
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
8
|
Su Y, Yang D, Wang Y, Ding J, Ding L, Song D. The construction of highly selective surface molecularly imprinted polymers based on Cu(II) coordination for the detection of bisphenol A. Talanta 2024; 269:125441. [PMID: 38029605 DOI: 10.1016/j.talanta.2023.125441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Herein, we designed and constructed a highly selective MIPs for bisphenol A (BPA) named Cu-MIPs@CS based on Cu(II) coordination. The synthesis of Cu-MIPs@CS employed a dummy template strategy and surface imprinting technology, with chitosan (CS) as the substrate linked to imprinted layers via Cu2+ bridging. 4-vinylpyridine acted as the functional monomer, capable of forming a complex with the template ketoprofen, while ethylene glycol dimethacrylate served as the cross linker. Cu-MIPs@CS exhibited a significantly enhanced imprinting factor of 14.78 for BPA, which was approximately 6.6 times higher than that of imprinted materials without Cu2+ (MIPs@CS). Cu-MIPs@CS exhibited a selective factor of 12.74 towards resorcinol, which possessed identical functional groups but a smaller size than BPA, representing an enhancement of selectivity by 12.25-fold compared to MIPs@CS. More importantly, Cu-MIPs@CS exhibited a superior discrimination ability between BPA and its structural analogue, diphenolic acid, with an excellent selective factor of 2.93, highlighting its significance in distinguish the structural analogue of BPA. In contrast, MIPs@CS lack sufficient selectivity to differentiate between them. Through exploration of adsorption mechanism of Cu-MIPs@CS, it was demonstrated that the incorporation of Cu2+ significantly reduced nonspecific adsorption, but also facilitated the creation of more selective imprinted cavities by introducing metal coordination, thereby notably enhancing the selectivity of Cu-MIPs@CS. Finally, the developed Cu-MIPs@CS were applied as the solid phase extraction adsorbent and combined with HPLC-DAD detection to establish an analytical method towards BPA in drinking water samples. The limit of detection of the method was 0.14 μg L-1 and recoveries ranged from 95.6 % to 101 %. This work provided broad prospects for construction of highly selective MIPs and accurate quantification of trace amounts of BPA.
Collapse
Affiliation(s)
- Yu Su
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dandan Yang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yanjie Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lan Ding
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China; College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
9
|
Mir TUG, Malik AQ, Shukla S, Singh J, Kumar D. Facile Synthesis of S-doped Carbon Quantum Dots and Their Application in the Detection of Sudan I in Saffron. J Fluoresc 2024; 34:253-263. [PMID: 37195542 DOI: 10.1007/s10895-023-03264-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
This study employed citric acid as a carbon source and thiourea as a sulphur source to conduct a straightforward one-step microwave synthesis of sulphur-doped carbon quantum dots (SCQDs). For the characterization of as-synthesized SCQDs, several methods such as fluorescence spectroscopy, X-Ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), and zeta potential analyzer were utilized. XRD and XPS spectroscopy are used to examine the chemical composition and morphological aspects. These QDs have a limited size distribution spanning up to 5.89 nm, with a maximum distribution at 7 nm, according to zeta size analyser examinations. At an excitation wavelength of 340 nm, the highest fluorescence intensity (FL intensity) of SCQDs was attained. With a detection limit of 0.77 M, the synthesized SCQDs were employed as an efficient fluorescent probe for the detection of Sudan I in saffron samples.
Collapse
Affiliation(s)
- Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Azad Qayoom Malik
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Jaskaran Singh
- Department of Forensic Science, Geeta University, Naultha, Panipat, 132145, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
10
|
Li T, Guo G, Xing H, Tang S, Hu H, Wang L, Qian X, Chen D. Construction of fluorescent sensor array and three-dimensional microfluidic paper based analytical device for specific identification and visual determination of antibiotics in food. Food Chem 2023; 429:136947. [PMID: 37499515 DOI: 10.1016/j.foodchem.2023.136947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
For antibiotics misuse since the global outbreak of COVID 19, a novel strategy for discriminating and detecting antibiotics is proposed based on the graphene quantum dots with multi-doped heteroatoms including F, N and P (M-GQDs), which exhibit blue emission (419.0 nm) under the excitation of 336.0 nm. Specifically, the fluorescence of M-GQDs is quenched by tetracyclines (TCs) owing to inner filter effect (IFE) and enhanced by alkane-modified fluoroquinolones (AFQs), which is attributed to restricted conformational rotation based on π-π stacking, hydrogen-bonding and electrostatic interactions. Meanwhile, the electron-accepting property of oxazine ring in oxazine-modified fluoroquinolones (OFQs) increases emission peak at 498.0 nm and decreases emission peak at 419.0 nm as the color changes from blue to cyan. Moreover, a cascade system integrated with 3D microfluidic paper-based analytical device (3D-μPAD) is applied successfully for visually distinguishing three antibiotics, which shows great potential and versatility of M-GQDs for food safety monitoring.
Collapse
Affiliation(s)
- Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Guoqiang Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Haoming Xing
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Siyuan Tang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China; Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Houwen Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Linfan Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Xiaoqing Qian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
11
|
Benner D, Yadav P, Bhatia D. Red emitting carbon dots: surface modifications and bioapplications. NANOSCALE ADVANCES 2023; 5:4337-4353. [PMID: 37638168 PMCID: PMC10448348 DOI: 10.1039/d3na00469d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
Quantum dots (QDs), and carbon quantum dots (CDs) in particular, have received significant attention for their special characteristics. These particles, on the scale of several nanometers, are often produced using simple and green methods, with naturally occurring organic precursors. In addition to facile production methods, CDs present advantageous applications in the field of medicine, primarily for bioimaging, antibacterial and therapeutics. Also, CDs present great potential for surface modification through methods like doping or material mixing during synthesis. However, the bulk of current literature focuses on CDs emitting in the blue wavelengths which are not very suitable for biological applications. Red emitting CDs are therefore of additional interest due to their brightness, photostability, novelty and deeper tissue penetration. In this review article, red CDs, their methods of production, and their biological applications for translational research are explored in depth, with emphasis on the effects of surface modifications and doping.
Collapse
Affiliation(s)
- Dawson Benner
- Department of Engineering, Texas A&M University College Station 77843 Texas USA
| | - Pankaj Yadav
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar Palaj 382355 Gujarat India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar Palaj 382355 Gujarat India
| |
Collapse
|
12
|
Kaurav H, Verma D, Bansal A, Kapoor DN, Sheth S. Progress in drug delivery and diagnostic applications of carbon dots: a systematic review. Front Chem 2023; 11:1227843. [PMID: 37521012 PMCID: PMC10375716 DOI: 10.3389/fchem.2023.1227843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Carbon dots (CDs), which have particle size of less than 10 nm, are carbon-based nanomaterials that are used in a wide range of applications in the area of novel drug delivery in cancer, ocular diseases, infectious diseases, and brain disorders. CDs are biocompatible, eco-friendly, easy to synthesize, and less toxic with excellent chemical inertness, which makes them very good nanocarrier system to deliver multi-functional drugs effectively. A huge number of researchers worldwide are working on CDs-based drug delivery systems to evaluate their versatility and efficacy in the field of pharmaceuticals. As a result, there is a tremendous increase in our understanding of the physicochemical properties, diagnostic and drug delivery aspects of CDs, which consequently has led us to design and develop CDs-based theranostic system for the treatment of multiple disorders. In this review, we aim to summarize the advances in application of CDs as nanocarrier including gene delivery, vaccine delivery and antiviral delivery, that has been carried out in the last 5 years.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Dhriti Verma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company Plc, Allegan, MI, United States
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| |
Collapse
|
13
|
Prathap N, Balla P, Shivakumar MS, Periyasami G, Karuppiah P, Ramasamy K, Venkatesan S. Prosopis juliflora hydrothermal synthesis of high fluorescent carbon dots and its antibacterial and bioimaging applications. Sci Rep 2023; 13:9676. [PMID: 37322059 PMCID: PMC10272132 DOI: 10.1038/s41598-023-36033-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Carbon dots have stimulated the curiosity of biomedical researchers due to their unique properties, such as less toxicity and high biocompatibility. The synthesis of carbon dots for biomedical application is a core area in research. In the current research, an eco-friendly hydrothermal technique was employed to synthesize high fluorescent, plant-derived carbon dots from Prosopis juliflora leaves extract (PJ-CDs). The synthesized PJ-CDs were investigated by physicochemical evaluation instruments such as fluorescence spectroscopy, SEM, HR-TEM, EDX, XRD, FTIR, and UV-Vis. The UV-Vis absorption peaks obtained at 270 nm due to carbonyl functional groups shifts of n→π*. In addition, a quantum yield of 7.88 % is achieved. The synthesized PJ-CDs showing the presence of carious functional groups O-H, C-H, C=O, O-H, C-N and the obtained particles in spherical shape with an average size of 8 nm. The fluorescence PJ-CDs showed stability against various environmental factors such as a broad range of ionic strength and pH gradient. The antimicrobial activity of PJ-CDs was tested against a Staphylococcus aureus, and a Escherichia coli. The results suggest that the PJ-CDs could substantially inhibit the growth of Staphylococcus aureus. The findings also indicate that PJ-CDs are effective materials for bio-imaging in Caenorhabditis elegans and they can be also used for pharmaceutical applications.
Collapse
Affiliation(s)
- Nadarajan Prathap
- Department of Environmental Science, School of Energy and Environmental Sciences, Periyar University, Salem, India
| | - Putrakumar Balla
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | | | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Krishnaraj Ramasamy
- Department of Mechanical Engineering, College of Engineering and Technology, and Director Centre for Excellence in Indigenous Knowledge Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dembi Dollo, Ethiopia.
| | - Srinivasan Venkatesan
- Department of Environmental Science, School of Energy and Environmental Sciences, Periyar University, Salem, India.
| |
Collapse
|
14
|
Azami M, Wei J, Valizadehderakhshan M, Jayapalan A, Ayodele OO, Nowlin K. Effect of Doping Heteroatoms on the Optical Behaviors and Radical Scavenging Properties of Carbon Nanodots. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:7360-7370. [PMID: 37113457 PMCID: PMC10123816 DOI: 10.1021/acs.jpcc.3c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Heteroatom doping is regarded as a promising method for controlling the optoelectronic properties of carbon nanodots (CNDs), notably their fluorescence and antioxidation activities. In this study, phosphorous (P) and boron (B) are doped at different quantities in the CNDs' structures to investigate their effects on the optical and antioxidation properties. Both the dopants can enhance light absorption and fluorescence, yet via different approaches. After doping, the UV-vis absorption of high P%-CNDs demonstrated a slight blue shift (348-345 nm), while the high B%-CNDs showed a minor red shift (348-351 nm), respectively. The fluorescence emission wavelength of doped CNDs changes marginally while the intensity increases significantly. Structural and composition characterizations show elevated levels of C=O on the surface of high P%-CND compared to low P%-CNDs. In B-doped CNDs, more NO3 - functional groups and O-C=O bonds and fewer C-C bonds form at the surface of high B%-CNDs compared to the low B%-CNDs. A radical scavenging study using 2,2-diphenyl-1-picrylhydrazyl (DPPH) was carried out for all CNDs. It was found that the high B%-CNDs exhibited the highest scavenging capacity. The effects of the atomic properties of dopants and the resulting structures of CNDs, including atomic radius, electronegativity, and bond lengths with carbon, on the optoelectronic property and antioxidative reactions of CNDs are comprehensively discussed. It suggests that the effect of P-doping has a major impact on the carbogenic core structure of the CNDs, while the B-doping mainly impacts the surface functionalities.
Collapse
Affiliation(s)
- Mahsa Azami
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Jianjun Wei
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Mehrab Valizadehderakhshan
- Joint
School of Nanoscience and Nanoengineering (JSNN), North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27401, United States
| | - Anitha Jayapalan
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Olubunmi O Ayodele
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Kyle Nowlin
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
15
|
He J, Yu L, Jiang Y, Lü L, Han Z, Zhao X, Xu Z. Encoding CsPbX3 perovskite quantum dots with different colors in molecularly imprinted polymers as fluorescent probes for the quantitative detection of Sudan I in food matrices. Food Chem 2023; 402:134499. [DOI: 10.1016/j.foodchem.2022.134499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/30/2023]
|
16
|
Yu M, Li P, Huang R, Xu C, Zhang S, Wang Y, Gong X, Xing X. Antibacterial and antibiofilm mechanisms of carbon dots: a review. J Mater Chem B 2023; 11:734-754. [PMID: 36602120 DOI: 10.1039/d2tb01977a] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the increasing bacterial resistance to conventional antibiotics, developing safe and effective approaches to combat infections caused by bacteria and biofilms has become an urgent clinical problem. Recently, carbon dots (CDs) have received great attention as a promising alternative to conventional antimicrobial agents due to their excellent antimicrobial efficacy and biocompatibility. Although CDs have been widely used in the field of antibacterial applications, their antibacterial and antibiofilm mechanisms have not been systematically discussed. This review provides a systematic overview on the complicated mechanisms of antibacterial and antibiofilm CDs based on recent development.
Collapse
Affiliation(s)
- Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Peili Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, P. R. China
| | - Ruobing Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Chunning Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Shiyin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Yanglei Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Xuedong Gong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| |
Collapse
|
17
|
Li D, Zhou P, Hu Y, Li G, Xia L. Rapid determination of illegally added Sudan I in cake by triphenylamine functionalized polyhedral oligomeric silsesquioxane fluorescence sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121673. [PMID: 35908501 DOI: 10.1016/j.saa.2022.121673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/08/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Triphenylamine functionalized polyhedral oligomeric silsesquioxane (POSS@TPA) was prepared using the Friedel-Crafts reaction with tris(4-bromophenyl)amine (TPA) as the functional monomer and polyhedral oligomeric silsesquioxane (POSS) as the framework. The as-prepared POSS@TPA has a stable structure and accomplished pore performance, allowing for the selective adsorption of Sudan I and result in the fluorescence quenches of POSS@TPA. Thus, the POSS@TPA could be used as sensors to fluorescence detect 0.12-7.4 mg/L Sudan I, with a detection limit of 0.091 mg/L. Moreover, the POSS@TPA have good reuseability can be reused more than 5 cycles after washing. Noteworthily, the response time of POSS@TPA for determination was as short as 1 min. Furthermore, the sensor was effectively used to determine Sudan I in cakes with excellent recoveries (86.4-108.8 %) and relative standard deviations (2.5-4.9 %). The results matched those of high-performance liquid chromatography (HPLC). Our work shows great potential in terms of the rapid detection of food safety.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Peipei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Zhang M, Yu H, Tang X, Zhu X, Deng S, Chen W. Multifunctional Carbon Dots-Based Fluorescence Detection for Sudan I, Sudan IV and Tetracycline Hydrochloride in Foods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234166. [PMID: 36500788 PMCID: PMC9738507 DOI: 10.3390/nano12234166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/29/2023]
Abstract
Sudan dyes are strictly prohibited from being added to edible products as carcinogens and tetracycline hydrochloride (TC) remaining in animal-derived food may cause harm to the human body. Therefore, it is necessary to establish a high-sensitivity, simple and convenient method for the detection of Sudan dyes and TC in foods for safety purposes. In this work, multifunctional blue fluorescent carbon dots (B-CDs) were prepared by a one-step hydrothermal synthesis using glucose as the carbon source. The results show that the fluorescence intensity of B-CDs was significantly affected by the acidity of the solution and can be quenched by Sudan I, IV and TC through selective studies. Interestingly, the fluorescence quenching intensities of B-CDs have a good linear relationship with the concentration of Sudan I and IV at pH = 3-7. The wide range of pH is beneficial to broaden the application of B-CDs in a practical samples analysis. The method has been successfully applied to real food samples of tomato paste, palm oil and honey, and the detection limits are 26.3 nM, 54.2 nM and 31.1 nM for Sudan I, Sudan IV and TC, respectively. This method integrates Sudan dyes and TC into the same multifunctional B-CDs, which shows that the sensor has a great potential in food safety detection.
Collapse
Affiliation(s)
- Min Zhang
- Department of Chemical Engineering, Yingkou Institute of Technology, Yingkou 115014, China
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Hongmei Yu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xiaodan Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xiuhui Zhu
- Department of Chemical Engineering, Yingkou Institute of Technology, Yingkou 115014, China
| | - Shuping Deng
- Department of Chemical Engineering, Yingkou Institute of Technology, Yingkou 115014, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA
| |
Collapse
|
19
|
Lin F, Wang Z, Wu FG. Carbon Dots for Killing Microorganisms: An Update since 2019. Pharmaceuticals (Basel) 2022; 15:1236. [PMID: 36297348 PMCID: PMC9607459 DOI: 10.3390/ph15101236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Frequent bacterial/fungal infections and occurrence of antibiotic resistance pose increasing threats to the public and thus require the development of new antibacterial/antifungal agents and strategies. Carbon dots (CDs) have been well demonstrated to be promising and potent antimicrobial nanomaterials and serve as potential alternatives to conventional antibiotics. In recent years, great efforts have been made by many researchers to develop new carbon dot-based antimicrobial agents to combat microbial infections. Here, as an update to our previous relevant review (C 2019, 5, 33), we summarize the recent achievements in the utilization of CDs for microbial inactivation. We review four kinds of antimicrobial CDs including nitrogen-doped CDs, metal-containing CDs, antibiotic-conjugated CDs, and photoresponsive CDs in terms of their starting materials, synthetic route, surface functionalization, antimicrobial ability, and the related antimicrobial mechanism if available. In addition, we summarize the emerging applications of CD-related antimicrobial materials in medical and industry fields. Finally, we discuss the existing challenges of antimicrobial CDs and the future research directions that are worth exploring. We believe that this review provides a comprehensive overview of the recent advances in antimicrobial CDs and may inspire the development of new CDs with desirable antimicrobial activities.
Collapse
Affiliation(s)
| | | | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
20
|
Chai S, Zhou L, Chi Y, Chen L, Pei S, Chen B. Enhanced antibacterial activity with increasing P doping ratio in CQDs. RSC Adv 2022; 12:27709-27715. [PMID: 36320288 PMCID: PMC9516558 DOI: 10.1039/d2ra04809d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
It is an urgent challenge to develop efficient antibacterial agents against resistant bacteria in the treatment of infectious diseases. Carbon quantum dots (CQDs) have attracted much attention owing to their good stability, low toxicity and excellent biocompatibility. In this work, CQDs doped with different contents of the element phosphorus (P) were prepared by a simple hydrothermal method using valine as a carbon source, triethylamine as a nitrogen source and different volumes of phosphoric acid as a phosphorus source. The average diameter and the surface charge could be regulated from 2.89 nm to 1.56 nm and +2.58 mV to +5.47 mV by increasing the content of the element P in these CQDs. Importantly, these CQDs showed effective bacterial inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The minimal inhibitory concentration (MIC) decreased from 0.71, to 0.51 to 0.18 mg mL-1 on E. coli and S. aureus with the increase of P element content. Furthermore, the morphologies of E. coli cells and S. aureus were damaged and became irregular upon treatment with these CQDs. The results of singlet oxygen (1O2) detection demonstrated that intracellular 1O2 was generated during the antibacterial process. We speculated that bacterial inhibition induced by these CQDs was accompanied by disruption of permeability and structural integrity, owing to strong electrostatic interactions between negatively charged bacteria and positively charged CQDs and production of singlet oxygen of CQDs. Together, this study indicates that the CQDs can be a candidate to treat resistant bacterial infections and may improve the understanding of killing pathogens by antibacterial CQD drugs.
Collapse
Affiliation(s)
- Shuiqin Chai
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology Chongqing 401331 P. R. China
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 P. R. China
| | - Lijia Zhou
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 P. R. China
| | - Yuting Chi
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 P. R. China
| | - Linshuo Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 P. R. China
| | - Shuchen Pei
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology Chongqing 401331 P. R. China
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 P. R. China
| | - Bin Chen
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
21
|
Meng Q, Wang Y, Li C, Hu X. Bismuth- and gadolinium-codoped carbon quantum dots with red/green dual emission for fluorescence/CT/T1-MRI mode imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj03420d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesized novel Bi,Gd-CQDs exhibit red and green fluorescence, enabling CT and MR imaging, and providing an approach for multifunctional biological imaging.
Collapse
Affiliation(s)
- Qin Meng
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530003, People's Republic of China
| | - Yun Wang
- School of Mechanical Engineering, Guangdong Songshan Polytechnic, Shaoguan, Guangdong, 512126, People's Republic of China
| | - Chunxing Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530003, People's Republic of China
| | - Xiaoxi Hu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530003, People's Republic of China
- School of Mechanical Engineering, Guangdong Songshan Polytechnic, Shaoguan, Guangdong, 512126, People's Republic of China
| |
Collapse
|
22
|
Zhang SR, Cai SK, Wang GQ, Cui JZ, Gao CZ. One-step synthesis of N, P-doped carbon quantum dots for selective and sensitive detection of Fe2+ and Fe3+ and scale inhibition. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Xing CH, Wang Y, Liu JC, Pan ZN, Zhang HL, Sun SC, Zhang Y. Melatonin reverses mitochondria dysfunction and oxidative stress-induced apoptosis of Sudan I-exposed mouse oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112783. [PMID: 34544023 DOI: 10.1016/j.ecoenv.2021.112783] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Sudan I is one of the industry dyes and widely used in cosmetics, wax agent, solvent and textile. Sudan I has multiple toxicity such as carcinogenicity, mutagenicity, genotoxicity and oxidative damage. However, Sudan I has been illegally used as colorant in food products, triggering worldwide attention about food safety. Nevertheless, the toxicity of Sudan I on reproduction, particularly on oocyte maturation is still unclear. In the present study, using mouse in vivo models, we report the toxicity effects of Sudan I on mouse oocyte. The results reflect that Sudan I exposure disrupts spindle organization and chromosomes alignment as well as cortical actin distribution, thus leading to the failure of polar body extrusion. Based on the transcriptome results, it is found that the exposure of Sudan I leads to the change in expression of 764 genes. Moreover, it's further reflected that the damaging effects of Sudan I are mediated by the destruction of mitochondrial functions, which induces the accumulated ROS to stimulate oxidative stress-induced apoptosis. As an endogenous hormone, melatonin within the ovarian follicle plays function on improving oocyte quality and female reproduction by efficiently suppressing oxidative stress. Moreover, melatonin supplementation also improves oocyte quality and increases fertilization rate during in vitro culture. Consistent with these, we find that in vivo supplementation of melatonin efficaciously suppresses mitochondrial dysfunction and the accompanying apoptosis, thus reverses oocyte meiotic deteriorations. Collectively, our results prove the reproduction toxicity of Sudan I for the exposure of Sudan I reduces the oocyte quality, and demonstrate the protective effects of melatonin against Sudan I-induced meiotic deteriorations.
Collapse
Affiliation(s)
- Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Wan J, Zhang X, Fu K, Zhang X, Shang L, Su Z. Highly fluorescent carbon dots as novel theranostic agents for biomedical applications. NANOSCALE 2021; 13:17236-17253. [PMID: 34651156 DOI: 10.1039/d1nr03740d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
As an emerging fluorescent nanomaterial, carbon dots (CDs) exhibit many attractive physicochemical features, including excellent photoluminescence properties, good biocompatibility, low toxicity and the ability to maintain the unique properties of the raw material. Therefore, CDs have been intensively pursued for a wide range of applications, such as bioimaging, drug delivery, biosensors and antibacterial agents. In this review, we systematically summarize the synthesis methods of these CDs, their photoluminescence mechanisms, and the approaches for enhancing their fluorescence properties. Particularly, we summarize the recent research on the synthesis of CDs from drug molecules as raw materials and introduce the representative application aspects of these fascinating CDs. Finally, we look into the future direction of CDs in the biomedical field and discuss the challenges encountered in the current development.
Collapse
Affiliation(s)
- Jiafeng Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
25
|
Liu X, Chang L, Peng L, Bai R, Wei Y, Ma C, Liu H. Poly(ionic liquid)-Based Efficient and Robust Antiseptic Spray. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48358-48364. [PMID: 34612620 DOI: 10.1021/acsami.1c11481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exploring efficient and robust antibacterial materials is crucially important for human health and ecological security. Compared with intrinsically antibacterial materials, materials modified with antibacterial agents either by chemical or physical modification can simultaneously maintain basic functions and antibacterial properties. In particular, physical modification with antiseptic sprays is quite suitable for large-size objects in our daily life but restricted by high volatility of the antibacterial agents or poor adhesion strength between the antibacterial agents and the targeted objects. In this paper, we report a poly(ionic liquid) (PIL-Cn)-based efficient and robust antiseptic spray that exhibits long-term antibacterial properties against both Gram-positive and Gram-negative bacteria on diverse substrates, including glass, PE, and cotton. It is believed that this work will provide an alternative for current antiseptic sprays for usage in our daily life and hospitals.
Collapse
Affiliation(s)
- Xi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li Chang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Liying Peng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Rushui Bai
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Chuao Ma
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongliang Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
26
|
P-Doped Carbon Quantum Dots with Antibacterial Activity. MICROMACHINES 2021; 12:mi12091116. [PMID: 34577758 PMCID: PMC8466419 DOI: 10.3390/mi12091116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/01/2023]
Abstract
It is a major challenge to effectively inhibit microbial pathogens in the treatment of infectious diseases. Research on the application of nanomaterials as antibacterial agents has evidenced their great potential for the remedy of infectious disease. Among these nanomaterials, carbon quantum dots (CQDs) have attracted much attention owing to their unique optical properties and high biosafety. In this work, P-doped CQDs were prepared by simple hydrothermal treatment of m-aminophenol and phosphoric acid with fluorescence emission at 501 nm when excited at 429 nm. The P-doped CQDs showed effective antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The minimal inhibitory concentrations (MICs) of P-doped CQD were 1.23 mg/mL for E. coli and 1.44 mg/mL for S. aureus. Furthermore, the morphologies of E. coli cells were damaged and S. aureus became irregular when treated with the P-doped CQDs. The results of zeta potential analysis demonstrated that the P-doped CQDs inhibit antibacterial activity and destroy the structure of bacteria by electronic interaction. In combination, the results of this study indicate that the as-prepared P-doped CQDs can be a promising candidate for the treatment of bacterial infections.
Collapse
|
27
|
Versatile Fluorescent Carbon Dots from Citric Acid and Cysteine with Antimicrobial, Anti-biofilm, Antioxidant, and AChE Enzyme Inhibition Capabilities. J Fluoresc 2021; 31:1705-1717. [PMID: 34424483 DOI: 10.1007/s10895-021-02798-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Nanostructured fluorescent particles derived from natural molecules were prepared by a green synthesis technique employing a microwave method. The precursors citric acid (CA) and cysteine (Cys) were used in the preparation of S- and N-doped Cys carbon dots (Cys CDs). Synthesis was completed in 3 min. The graphitic structure revealed by XRD analysis of Cys CDs dots had good water dispersity, with diameters in the range of 2-20 nm determined by TEM analysis. The isoelectric point of the S, N-doped CDs was pH value for 5.2. The prepared Cys CDs displayed excellent fluorescence intensity with a high quantum yield of 75.6 ± 2.1%. Strong antimicrobial capability of Cys CDs was observed with 12.5 mg/mL minimum bactericidal concentration (MBC) against gram-positive and gram-negative bacteria with the highest antimicrobial activity obtained against Staphylococcus aureus. Furthermore, Cys CDs provided total biofilm eradication and inhibition abilities against Pseudomonas aeruginosa at 25 mg/mL concentration. Cys CDs are promising antioxidant materials with 1.3 ± 0.1 μmol Trolox equivalent/g antioxidant capacity. Finally, Cys CDs were also shown to inhibit the acetylcholinesterase (AChE) enzyme, which is used in the treatment of Alzheimer's disease, even at the low concentration of 100 μg/mL.
Collapse
|
28
|
Hao X, Huang L, Zhao C, Chen S, Lin W, Lin Y, Zhang L, Sun A, Miao C, Lin X, Chen M, Weng S. Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111971. [PMID: 33812599 DOI: 10.1016/j.msec.2021.111971] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Widespread bacterial infection and the spread of antibiotic resistance exhibit increasing threat to the public and thus require new antibacterial strategies. Carbon quantum dots (CQDs) have been extensively investigated to play fluorescent, catalytic roles and even potential biomedical functions containing sterilization. However, synthetic understanding of the interaction of CQDs and bacteria, the exhibition of antibacterial ability, and the risk of resistance evolution remain lacking. Herein, a simple one-pot method was fabricated to prepare positively charged CQDs (PC-CQDs) as a broad-spectrum antibacterial agent. PC-CQDs possessed effective antibacterial activity against all tested Gram-positive, Gram-negative, and drug-resistant bacteria. Investigation of the antibacterial mechanism of PC-CQDs indicated that small-sized PC-CQDs functionalized with -NH2 and -NH induced strong adherence behavior on the bacterial cell membrane. Moreover, the entry of PC-CQDs caused conformational changes in the genes and generation of reactive oxygen species in the bacteria. Safety evaluation illustrated that PC-CQDs did not trigger detectable drug resistance or hemolysis. Furthermore, PC-CQDs effectively promoted the antibacterial treatment of mixed Staphylococcus aureus and Escherichia coli infected wound in rats with low in vivo toxicity. These results suggested that PC-CQDs are a potential antibacterial candidate for real wound healing applications in complex bacterial infections and even resistant bacteria-caused infections.
Collapse
Affiliation(s)
- Xiaoli Hao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Lingling Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chengfei Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Sining Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Wanjing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yinning Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Lirong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - An'an Sun
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|