1
|
Bartolf-Kopp M, Jungst T. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process? Adv Healthc Mater 2024; 13:e2400426. [PMID: 38607966 DOI: 10.1002/adhm.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Melt Electrowriting (MEW) is a continuously growing manufacturing platform. Its advantage is the consistent production of micro- to nanometer fibers, that stack intricately, forming complex geometrical shapes. MEW allows tuning of the mechanical properties of constructs via the geometry of deposited fibers. Due to this, MEW can create complex mechanics only seen in multi-material compounds and serve as guiding structures for cellular alignment. The advantage of MEW is also shown in combination with other biotechnological manufacturing methods to create multilayered constructs that increase mechanical approximation to native tissues, biocompatibility, and cellular response. These features make MEW constructs a perfect candidate for small-diameter vascular graft structures. Recently, studies have presented fascinating results in this regard, but is this truly the direction that tubular MEW will follow or are there also other options on the horizon? This perspective will explore the origins and developments of tubular MEW and present its growing importance in the field of artificial small-diameter vascular grafts with mechanical modulation and improved biomimicry and the impact of it in convergence with other manufacturing methods and how future technologies like AI may influence its progress.
Collapse
Affiliation(s)
- Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
- Department of Orthopedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
2
|
Baroth T, Loewner S, Heymann H, Cholewa F, Blume H, Blume C. An Intelligent and Efficient Workflow for Path-Oriented 3D Bioprinting of Tubular Scaffolds. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:323-332. [PMID: 38389675 PMCID: PMC10880655 DOI: 10.1089/3dp.2022.0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Modern 3D printing is a valuable tool for tissue engineering (TE), and the fabrication of complex geometries such as tubular scaffolds with adaptable structure, for example, as replacements for intestines, bronchi, esophagus, or vessels, could contribute to standardized procedures in the future of regenerative medicine. However, high-precision bioprinting of scaffolds for tubular TE applications remain a major challenge and is an arduous endeavor with currently available three-axis bioprinters, which are limited to planar, layer-by-layer printing processes. In this work, a novel, straightforward workflow for creating toolpaths and command sets for tubular scaffolds is presented. By combining a custom software application with commercial 3D design software, a comparatively large degree of design freedom was achieved while ensuring ease of use and extensibility for future research needs. As a hardware platform, two commercial 3D bioprinters were retrofitted with a rotary axis to accommodate cylindrical mandrels as print beds, overcoming the limitations of planar print beds. The printing process using the new method was evaluated in terms of the mechanical, actuation, and synchronization characteristics of the linear and rotating axes, as well as the stability of the printing process. In this context, it became clear that extrusion-based printing processes are very sensitive to positioning errors when used with small nozzles. Despite these technical difficulties, the new process can produce single-layer, multilayer, and multimaterial structures with a wide range of pore geometries. In addition, extrusion-based printing processes can be combined with melt electrowriting to produce durable scaffolds with features in the micrometer to millimeter range. Overall, the suitability of this setup for a wide range of TE applications has thus been demonstrated.
Collapse
Affiliation(s)
- Timo Baroth
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Sebastian Loewner
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Henrik Heymann
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Fabian Cholewa
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Holger Blume
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
3
|
Slavkovic V, Palic N, Milenkovic S, Zivic F, Grujovic N. Thermo-Mechanical Characterization of 4D-Printed Biodegradable Shape-Memory Scaffolds Using Four-Axis 3D-Printing System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5186. [PMID: 37512458 PMCID: PMC10386114 DOI: 10.3390/ma16145186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
This study was conducted on different models of biodegradable SMP (shape-memory polymer) scaffolds. A comparison was conducted utilizing a basic FDM (fused deposition modeling)/MEX (material extrusion) printer with a standard printing technique and a novel, modified, four-axis printing method with a PLA (poly lactic acid) polymer as the printing material. This way of making the 4D-printed BVS (biodegradable vascular stent) made it possible to achieve high-quality surfaces due to the difference in printing directions and improved mechanical properties-tensile testing showed a doubling in the elongation at break when using the four-axis-printed specimen compared to the regular printing, of 8.15 mm and 3.92 mm, respectfully. Furthermore, the supports created using this method exhibited a significant level of shape recovery following thermomechanical programming. In order to test the shape-memory effect, after the thermomechanical programming, two approaches were applied: one approach was to heat up the specimen after unloading it inside temperature chamber, and the other was to heat it in a warm bath. Both approaches led to an average recovery of the original height of 99.7%, while the in-chamber recovery time was longer (120 s) than the warm-bath recovery (~3 s) due to the more direct specimen heating in the latter case. This shows that 4D printing using the newly proposed four-axis printing is an effective, promising technique that can be used in the future to make biodegradable structures from SMP.
Collapse
Affiliation(s)
- Vukasin Slavkovic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nikola Palic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Fatima Zivic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad Grujovic
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Vernon MJ, Lu J, Padman B, Lamb C, Kent R, Mela P, Doyle B, Ihdayhid AR, Jansen S, Dilley RJ, De‐Juan‐Pardo EM. Engineering Heart Valve Interfaces Using Melt Electrowriting: Biomimetic Design Strategies from Multi-Modal Imaging. Adv Healthc Mater 2022; 11:e2201028. [PMID: 36300603 PMCID: PMC11468946 DOI: 10.1002/adhm.202201028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/12/2022] [Indexed: 01/28/2023]
Abstract
Interfaces within biological tissues not only connect different regions but also contribute to the overall functionality of the tissue. This is especially true in the case of the aortic heart valve. Here, melt electrowriting (MEW) is used to engineer complex, user-defined, interfaces for heart valve scaffolds. First, a multi-modal imaging investigation into the interfacial regions of the valve reveals differences in collagen orientation, density, and recruitment in previously unexplored regions including the commissure and inter-leaflet triangle. Overlapping, suturing, and continuous printing methods for interfacing MEW scaffolds are then investigated for their morphological, tensile, and flexural properties, demonstrating the superior performance of continuous interfaces. G-codes for MEW scaffolds with complex interfaces are designed and generated using a novel software and graphical user interface. Finally, a singular MEW scaffold for the interfacial region of the aortic heart valve is presented incorporating continuous interfaces, gradient porosities, variable layer numbers across regions, and tailored fiber orientations inspired by the collagen distribution and orientation from the multi-modal imaging study. The scaffold exhibits similar yield strain, hysteresis, and relaxation behavior to porcine heart valves. This work demonstrates the ability of a bioinspired approach for MEW scaffold design to address the functional complexity of biological tissues.
Collapse
Affiliation(s)
- Michael J. Vernon
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Jason Lu
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Benjamin Padman
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaPerthWA6009Australia
| | - Christopher Lamb
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Ross Kent
- Regenerative Medicine ProgramCIMAUniversidad de NavarraPamplonaNavarra31008Spain
| | - Petra Mela
- Medical Materials and ImplantsDepartment of Mechanical Engineering, Munich Institute of Biomedical Engineering and TUM School of Engineering and DesignTechnical University of MunichBoltzmannstr. 1585748GarchingGermany
| | - Barry Doyle
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralian Research CouncilParkvilleACT2609Australia
- British Heart Foundation Centre of Cardiovascular ScienceThe University of EdinburghEdinburghEH1‐3ATUK
| | - Abdul Rahman Ihdayhid
- Department of CardiologyFiona Stanley HospitalPerthWA6150Australia
- Curtin Medical SchoolCurtin UniversityPerthWA6102Australia
| | - Shirley Jansen
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- Curtin Medical SchoolCurtin UniversityPerthWA6102Australia
- Department of Vascular and Endovascular SurgerySir Charles Gairdner HospitalPerthWA6009Australia
- Heart and Vascular Research InstituteHarry Perkins Institute of Medical ResearchPerthWA6009Australia
| | - Rodney J. Dilley
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Elena M. De‐Juan‐Pardo
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| |
Collapse
|
5
|
Culturing of Cardiac Fibroblasts in Engineered Heart Matrix Reduces Myofibroblast Differentiation but Maintains Their Response to Cyclic Stretch and Transforming Growth Factor β1. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100551. [PMID: 36290519 PMCID: PMC9598692 DOI: 10.3390/bioengineering9100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Isolation and culturing of cardiac fibroblasts (CF) induces rapid differentiation toward a myofibroblast phenotype, which is partly mediated by the high substrate stiffness of the culture plates. In the present study, a 3D model of Engineered Heart Matrix (EHM) of physiological stiffness (Youngs modulus ~15 kPa) was developed using primary adult rat CF and a natural hydrogel collagen type 1 matrix. CF were equally distributed, viable and quiescent for at least 13 days in EHM and the baseline gene expression of myofibroblast-markers alfa-smooth muscle actin (Acta2), and connective tissue growth factor (Ctgf) was significantly lower, compared to CF cultured in 2D monolayers. CF baseline gene expression of transforming growth factor-beta1 (Tgfβ1) and brain natriuretic peptide (Nppb) was higher in EHM-fibers compared to the monolayers. EHM stimulation by 10% cyclic stretch (1 Hz) increased the gene expression of Nppb (3.0-fold), Ctgf (2.1-fold) and Tgfβ1 (2.3-fold) after 24 h. Stimulation of EHM with TGFβ1 (1 ng/mL, 24 h) induced Tgfβ1 (1.6-fold) and Ctgf (1.6-fold). In conclusion, culturing CF in EHM of physiological stiffness reduced myofibroblast marker gene expression, while the CF response to stretch or TGFβ1 was maintained, indicating that our novel EHM structure provides a good physiological model to study CF function and myofibroblast differentiation.
Collapse
|
6
|
van Kampen KA, Fernández-Pérez J, Baker M, Mota C, Moroni L. Fabrication of a mimetic vascular graft using melt spinning with tailorable fiber parameters. BIOMATERIALS ADVANCES 2022; 139:212972. [PMID: 35882129 DOI: 10.1016/j.bioadv.2022.212972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Smooth muscle cells play a pivotal role in maintaining blood pressure and remodeling of the extracellular matrix. These cells have a characteristic spindle shape and are aligned in the radial direction to aid in the constriction of any artery. Tissue engineered grafts have the potential to recreate this alignment and offer a viable alternative to non-resorbable or autologous grafts. Specifically, with melt spinning small diameter fibers can be created that can align circumferentially on the scaffolds. In this study, a set of simplified equations were formulated to predict the final fiber parameters. Smooth muscle cell alignment was monitored on the fabricated scaffolds. Finally, a co-culture of smooth muscle cells in direct contact with endothelial cells was performed to assess the influence of the smooth muscle cell alignment on the morphology of the endothelial cells. The results show that the equations were able to accurately predict the fiber diameter, distance and angle. Primary vascular smooth muscle cells aligned according to the fiber direction mimicking the native orientation. The co-culture with endothelial cells showed that the aligned smooth muscle cells did not have an influence on the morphology of the endothelial cells. In conclusion, we formulated a series of equations that can predict the fiber parameters during melt spinning. Furthermore, the method described here can create a vascular graft with smooth muscle cells aligned circumferentially that morphologically mimics the native orientation.
Collapse
Affiliation(s)
- Kenny A van Kampen
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Julia Fernández-Pérez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Matthew Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands.
| |
Collapse
|
7
|
Shi E, Lou L, Warburton L, Rubinsky B. 3D Printing in Combined Cartesian and Curvilinear Coordinates. J Med Device 2022. [DOI: 10.1115/1.4055064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
A 3D printing technology that facilitates continuous printing along a combination of cartesian and curvilinear coordinates, designed for in vivo and in situ bioprinting is introduced. The combined cartesian/curvilinear printing head motion is accomplished by attaching a biomimetic, flexible, "tendon cable" soft robot arm to a conventional cartesian three axis 3D printing carousel. This allows printing along a combination of cartesian and curvilinear coordinates using five independent stepper motors controlled by an Arduino Uno with each motor requiring a microstep driver powered via a 12V power supply. Three of the independent motors control the printing head motion along conventional cartesian coordinates while two of the independent motors control the length of each pair of the four "tendon cables" which in turn controls the radius of curvature and the angle displacement of the soft printer head along two orthogonal planes. This combination imparts motion along six independent degrees of freedom in cartesian and curvilinear coordinates. The design of the system is described together with experimental results which demonstrate that this design can print continuously along curved and inclined surfaces while avoiding the "staircase" effect, which is typical of conventional three axis 3D printing along curvilinear surfaces.
Collapse
Affiliation(s)
- Edward Shi
- Department of Mechanical Engineering, University of California Berkeley; Department of Mechanical Engineering, University of Colorado , Boulder
| | - Leo Lou
- Department of Bioengineering, University of California Berkeley
| | - Linnea Warburton
- Department of Mechanical Engineering, University of California Berkeley
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California Berkeley; Department of Bioengineering, University of California Berkeley
| |
Collapse
|
8
|
Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. MATERIALS 2021; 14:ma14226763. [PMID: 34832165 PMCID: PMC8619049 DOI: 10.3390/ma14226763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics, especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, nondestructive, high-performance machine, enabling visualization and structure analysis at submicronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features and reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g., shape, porosity, wall thickness) and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assessing the scaffolds’ features and monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.
Collapse
|
9
|
Yuan Z, Ren Y, Shafiq M, Chen Y, Tang H, Li B, El-Newehy M, El-Hamshary H, Morsi Y, Zheng H, Mo X. Converging 3D Printing and Electrospinning: Effect of Poly(l-lactide)/Gelatin Based Short Nanofibers Aerogels on Tracheal Regeneration. Macromol Biosci 2021; 22:e2100342. [PMID: 34706143 DOI: 10.1002/mabi.202100342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Indexed: 12/28/2022]
Abstract
Recently, various tissue engineering based strategies have been pursued for the regeneration of tracheal tissues. However, previously developed tracheal scaffolds do not accurately mimic the microstructure and mechanical behavior of the native trachea, which restrict their clinical translation. Here, tracheal scaffolds are fabricated by using 3D printing and short nanofibers (SF) dispersion of poly(l-lactide)/gelatin (0.5-1.5 wt%) to afford tracheal constructs. The results display that the scaffolds containing 1.0 wt % of SF exhibit low density, good water absorption capacity, reasonable degradation rate, and stable mechanical properties, which were comparable to the native trachea. Moreover, the designed scaffolds possess good biocompatibility and promote the growth and infiltration of chondrocytes in vitro. The biocompatibility of tracheal scaffolds is further assessed after subcutaneous implantation in mice for up to 4 and 8 weeks. Histological assessment of tracheal constructs explanted at week 4 shows that scaffolds can maintain their structural integrity and support the formation of neo-vessels. Furthermore, cell-scaffold constructs gradually form cartilage-like tissues, which mature with time. Collectively, these engineered tracheal scaffolds not only possess appropriate mechanical properties to afford a stabilized structure but also a biomimetic extracellular matrix-like structure to accomplish tissue regeneration, which may have broad implications for tracheal regeneration.
Collapse
Affiliation(s)
- Zhengchao Yuan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Baojie Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC, 3122, Australia
| | - Hui Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
10
|
Poly(ε-caprolactone)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blend from Fused Deposition Modeling as Potential Cartilage Scaffolds. INT J POLYM SCI 2021. [DOI: 10.1155/2021/6689789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The scaffolds of poly(ε-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PCL/PHBV) blends were fabricated from fused deposition modeling. From indirect cytotoxicity testing based on mouse fibroblasts, all scaffolds with various blend ratios were nontoxic to cells. The surface-treated scaffold with a blend ratio of 25/75 PCL/PHBV exhibited the highest proliferation of porcine chondrocytes and total glycosaminoglycans (GAGs) after 21 days of culture. The scaffolds with a blend ratio of 25/75 with local pores (LP) were prepared from FDM along with a salt leaching technique using NaCl as porogens. The effect of NaOH in surface treatment on the biological property of scaffolds was investigated. The scaffolds with LP and with 1 M NaOH surface treatment exhibited the highest proliferation of cells and total GAGs after 28 days of culture. The degradation behaviors of the scaffolds were studied. The nonsurface treated, surface treated without LP, and surface treated with LP scaffolds were degraded in phosphate buffer (pH 7.4) for 30 days at 37°C and 50°C for nonenzymatic condition and at 37°C for enzymatic condition. The surface treated with LP scaffold showed the highest amount of weight loss, followed by the surface treated without LP, and the nonsurface-treated scaffolds without LP, respectively. The results from Fourier-transform infrared spectroscopy indicated degradation of PCL and PHBV through hydrolysis of the ester functional group. The compressive strengths of all scaffolds were sufficiently high. The results suggested that the scaffolds with the existence of LP and with surface treatment showed the highest potential for use as cartilage scaffolds.
Collapse
|
11
|
Kwon J, Ock J, Kim N. Mimicking the Mechanical Properties of Aortic Tissue with Pattern-Embedded 3D Printing for a Realistic Phantom. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5042. [PMID: 33182404 PMCID: PMC7664885 DOI: 10.3390/ma13215042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 01/17/2023]
Abstract
3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus-VeroCyan and Dragonskin 30-TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0-3.0 MPa and 2.0-2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.
Collapse
Affiliation(s)
- Jaeyoung Kwon
- Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul 138-828, Korea; (J.K.); (J.O.)
| | - Junhyeok Ock
- Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul 138-828, Korea; (J.K.); (J.O.)
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul 138-828, Korea
| |
Collapse
|