1
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. Coating of polydimethylsiloxane nanoparticles improves bioactivity of cellulose paper for culture of fibroblasts. Int J Biol Macromol 2025; 311:143975. [PMID: 40334903 DOI: 10.1016/j.ijbiomac.2025.143975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 04/24/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Paper has recently emerged as a promising platform for cell culture owing to its flexible three-dimensional matrix, high porosity, biocompatibility, cost-effectiveness and widespread availability. However, native paper is devoid of cell adhesion motifs and various surface modification techniques are generally employed on paper substrate before cell seeding, most of which are complicated, expensive, time-consuming and require use of sophisticated instruments. In the present work, for the first time, we have coated polydimethylsiloxane (PDMS) nanoparticles (NPs) onto the cellulose fibers of paper to improve its bioactivity while retaining the fibrous morphology. A modified nanoprecipitation method was employed to prepare PDMS NPs of ~30 nm size and 1 mg/ml concentration. Owing to the inherent skin-like mechanical properties of PDMS, the NPs could offer anchoring sites to the skin cells in the form of nanotopographic and biomechanical cues for enhanced interaction with the paper matrix. NIH/3T3 fibroblast cells cultured on the coated paper substrate exhibited elongated and spindle like morphology (characteristic of fibroblasts in vivo) with an increase in cellular adhesion and proliferation (ca. 74 % more cell viability after 48 h as compared to uncoated paper). After culturing for 15 days, the fibroblasts secreted excessive collagen and formed tissue-like sheet of cells which further advocate for the excellent suitability of the PDMS NPs coated paper substrate for culture of skin cells.
Collapse
Affiliation(s)
- Auhin Kumar Maparu
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Prerana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India; Material Science Programme, Thematic Unit of Excellence on Soft Nanofabrication, Centre for Environmental Science & Engineering, Mehta Family Centre for Engineering in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
2
|
Al-Hammood O, Muhammed Muzher H, Hasan Mousa R, Vahedian Boroujeni V, Noory P, Mirhaj M, Al-Musawi MH, Talib Al-Sudani B, A Mohammed A, Shahriari-Khalaji M, Valizadeh H, Sharifianjazi F, Bazli L, Tavamaishvili K, Mortazavi Moghadam F, Tavakoli M. Deferoxamine-Loaded Trilayer Scaffold Containing Propolis and Sulfated Polysaccharides Promotes In Vivo Wound Healing through Angiogenesis Stimulation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23484-23498. [PMID: 40197030 DOI: 10.1021/acsami.4c20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The skin exhibits a hierarchical structure, and the application of tissue engineering techniques is recommended for the treatment of severe cutaneous injuries. To biologically mimic the structural characteristics of the distinct layers of the skin, the utilization of multilayered scaffolds has become a prominent approach. In the current study, an asymmetric trilayered scaffold was fabricated, consisting of a middle layer (ML) composed of 3D printed poly(vinyl alcohol)-carrageenan (PVA.Crg), a top layer (TL) of nanofibrous polycaprolactone-propolis (PCL.Pp), and a bottom layer (BL) of poly(vinyl alcohol)-fucoidan-deferoxamine (PVA.Fu.Def) nanofibers. It was indicated that the tensile strength and elastic modulus of the trilayer scaffold were significantly higher compared to other samples. The in vitro degradation rate of the studied scaffolds as well as the release of Def from the trilayer scaffold after 7 days were quantified within the range of 36-40 and 91.1%, respectively. The release of Def did not induce cytotoxicity and chicken chorioallantoic membrane assay revealed that the release of Def remarkably enhanced angiogenesis. Furthermore, the in vivo examinations exhibited the fastest re-epithelialization in the group treated with the trilayer scaffold containing Def. The findings of this study suggest the potential application of the fabricated trilayer scaffold as a skin substitute or wound dressing.
Collapse
Affiliation(s)
- Orooba Al-Hammood
- Department of Forensic Science, College of Science, Al-Nahrain University, Baghdad 10072, Iraq
| | - Huda Muhammed Muzher
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Ruqaya Hasan Mousa
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Vala Vahedian Boroujeni
- Department of Food and Drug Control, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1461884513, Iran
| | - Parastoo Noory
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Ahmed A Mohammed
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Mina Shahriari-Khalaji
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Hamideh Valizadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
| | - Leila Bazli
- School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., 0160 Tbilisi, Georgia
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
3
|
Wu Y, Ji C, Yan Z, Fang X, Wang Y, Ma Y, Li J, Jin S, Chen H, Ji S, Zheng Y, Xiao S. Biological Coatings: Advanced Strategies Driving Multifunctionality and Clinical Potential in Dermal Substitutes. J Biomed Mater Res B Appl Biomater 2025; 113:e35545. [PMID: 39992741 DOI: 10.1002/jbm.b.35545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
Skin tissue defects caused by various acute and chronic etiologies frequently occur in clinical medicine. Traditional surgical repair methods have certain limitations, while dermal substitutes combined with skin grafting have become an alternative to conventional surgery. Biological coatings, by loading bioactive substances such as polysaccharides and proteins, or by using bioactive substances as carriers, can promote cell adhesion, proliferation, and differentiation. This optimizes the mechanical properties and biocompatibility of the substitutes, enhances their antibacterial properties, and improves their feasibility for clinical application. This paper explores various common biological coating materials and the construction methods used in the field of dermal substitutes. It highlights the importance and necessity of biological coatings in the development of multifunctional designs for dermal substitutes. By summarizing the current research, this paper aims to offer new insights and references for the multifunctional design and clinical application of dermal substitutes.
Collapse
Affiliation(s)
- Yixin Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Chao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Zhenzhen Yan
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Xiaowan Fang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yuxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yicheng Ma
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Jingzhu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Shunxin Jin
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Hao Chen
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Paniagua SA, Menezes DB, Murillo MFC, Henriquez LC, Baudrit JRV. Nature-inspired innovations: unlocking the potential of biomimicry in bionanotechnology and beyond. DISCOVER NANO 2024; 19:186. [PMID: 39570498 PMCID: PMC11582260 DOI: 10.1186/s11671-024-04153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2024]
Abstract
Bionanotechnology research has surged to the forefront of scientific innovation, propelling the exploration of cutting-edge technologies and interdisciplinary collaboration. Biomimicry, which harnesses nature's ingenuity, drives the development of novel research-based solutions in diverse fields such as vaccines, medicine, and biomedical devices. Nature's role is becoming increasingly pivotal in addressing complex challenges related to environmental conservation, human health, and pandemic preparedness, including those posed by SARS-CoV-2 and other emerging pathogens. Progress in this domain encompasses understanding nature´s mechanisms to develop advanced materials inspired by biological structures. Biomimetic innovations have the potential to revolutionize industries, reduce environmental impacts, and facilitate a more harmonious relationship between humans and nature while considering bioethics, underlining the necessity of conducting responsible research and implementing biomimetic advancements conscientiously. As biomimicry continues to grow, integrating ethical guidelines and policies will ensure these nature-inspired technologies' sustainable development and application, ultimately contributing to a more resilient and adaptive society. This mini-review article broadly overviews bionanotechnology applications based on natural examples.
Collapse
Affiliation(s)
- Sergio A Paniagua
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), 10109, Pavas, San José, Costa Rica
| | - Diego Batista Menezes
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), 10109, Pavas, San José, Costa Rica
| | | | - Luis Castillo Henriquez
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), 10109, Pavas, San José, Costa Rica
- Laboratory of Physical Chemistry, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - José Roberto Vega Baudrit
- National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CENAT), 10109, Pavas, San José, Costa Rica.
- Chemistry School, National University, Heredia, Costa Rica.
| |
Collapse
|
5
|
Astaneh ME, Hashemzadeh A, Fereydouni N. Recent advances in sodium alginate-based dressings for targeted drug delivery in the context of diabetic wound healing. J Mater Chem B 2024; 12:10163-10197. [PMID: 39283024 DOI: 10.1039/d4tb01049c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Diabetic wounds pose a significant challenge in healthcare due to impaired healing and increased risk of complications. In recent years, various drug delivery systems with stimuli-responsive features have been developed to address these issues. These systems enable precise dosage control and tailored drug release, promoting comprehensive tissue repair and regeneration. This review explores targeted therapeutic agents, such as carboxymethyl chitosan-alginate hydrogel formulations, nanofiber mats, and core-shell nanostructures, for diabetic wound healing. Additionally, the integration of nanotechnology and multifunctional biomimetic scaffolds shows promise in enhancing wound healing outcomes. Future research should focus on optimizing the design, materials, and printing parameters of 3D-bio-printed wound dressings, as well as exploring combined strategies involving the simultaneous release of antibiotics and nitric oxide for improved wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Luo Y, Hu Z, Ni R, Xu R, Zhao J, Feng P, Zhu T, Chen Y, Yao J, Yao Y, Yang L, Zhang H, Zhu Y. Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration. Biomater Res 2024; 28:0076. [PMID: 39253032 PMCID: PMC11382380 DOI: 10.34133/bmr.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe3O4) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe3O4 self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jianmin Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Peipei Feng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315046, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yaoqi Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jie Yao
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Yudong Yao
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Lu Yang
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Hua Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Swarupa S, Thareja P. Techniques, applications and prospects of polysaccharide and protein based biopolymer coatings: A review. Int J Biol Macromol 2024; 266:131104. [PMID: 38522703 DOI: 10.1016/j.ijbiomac.2024.131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The growing relevance of sustainable materials has recently led to the exploration of naturally derived biopolymeric hydrogels as coating materials due to their biodegradability, biocompatibility, ease of fabrication and modification. Although many review articles exist on biopolymeric coatings, they mainly focus on a specific polysaccharide, protein biopolymer, or a particular application- biomedical engineering or food preservation. The current review first summarizes the commonly used polysaccharide and protein-based biopolymers like chitosan, alginate, carrageenan, pectin, cellulose, starch, pullulan, agarose and silk fibroin, gelatin, respectively, with a systematic description of the techniques widely used for physical coating on substrates. Then, broad applications of these biopolymeric coatings on various substrates in biomedical engineering- 3D scaffolds, biomedical implants, and nanoparticles are described in detail. It also entails the application of biopolymeric coatings for food preservation in the form of food packaging and edible coatings. A brief discussion on the newly discovered interest in exploring biopolymers for anticorrosive coating applications is also included. Finally, concluding remarks on the role of biopolymer microstructures in forming homogeneous coatings, prospective alternatives to the currently used biopolymers as coating material and the advent of computer-aided technologies to expedite experimental findings are presented.
Collapse
Affiliation(s)
- Sanchari Swarupa
- Biological Sciences and Engineering, IIT Gandhinagar, Palaj, Gujarat 382355, India
| | - Prachi Thareja
- Chemical Engineering, Dr. Kiran C. Patel Centre for Sustainable Development, IIT Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
8
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. PDMS nanoparticles-decorated PDMS substrate promotes adhesion, proliferation and differentiation of skin cells. J Colloid Interface Sci 2024; 659:629-638. [PMID: 38198940 DOI: 10.1016/j.jcis.2023.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Polydimethylsiloxane (PDMS) is known to be a common substrate for various cell culture-based applications. However, native PDMS is not very conducive for cell culture and hence, surface modification via cell adhesion moieties is generally needed to make it suitable especially for long-term cell culture. To address this issue, we propose to coat PDMS nanoparticles (NPs) on the surface of PDMS film to improve adhesion, proliferation and differentiation of skin cells. The proposed modification strategy introduces necessary nanotopography without altering the surface chemical properties of PDMS. Due to resemblance in the mechanical properties of PDMS with skin, PDMS NPs can recreate the native extracellular nanoenvironment of skin on the PDMS surface and provide anchoring sites for skin cells to adhere and grow. Human keratinocytes, representing 95% of the epidermal skin cells maintained their characteristic well-spread morphology with the formation of interconnected cell-sheets on this coated PDMS surface. Moreover, our in vitro immunofluorescence studies confirmed expression of distinctive epidermal protein markers on the coated surface indicating close resemblance with the native skin epidermis. Conclusively, our findings suggest that introducing nanotopography via PDMS NPs can be an effective strategy for emulating the native cellular functions of keratinocytes on PDMS based cell culture devices.
Collapse
Affiliation(s)
- Auhin Kumar Maparu
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Prerana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India; Material Science Programme, Thematic Unit of Excellence on Soft Nanofabrication, Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
9
|
Footner E, Firipis K, Liu E, Baker C, Foley P, Kapsa RMI, Pirogova E, O'Connell C, Quigley A. Layer-by-Layer Analysis of In Vitro Skin Models. ACS Biomater Sci Eng 2023; 9:5933-5952. [PMID: 37791888 DOI: 10.1021/acsbiomaterials.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.
Collapse
Affiliation(s)
- Elizabeth Footner
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Kate Firipis
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Emily Liu
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Chris Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Peter Foley
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Cathal O'Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
10
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
11
|
Song JY, Lee HS, Kim DY, Yun HJ, Yi CC, Park SM. Fabrication Procedure for a 3D Hollow Nanofibrous Bifurcated-Tubular Scaffold by Conformal Electrospinning. ACS Macro Lett 2023; 12:659-666. [PMID: 37155320 DOI: 10.1021/acsmacrolett.3c00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electrospinning has shown great potential for the fabrication of 3D nanofibrous tubular scaffolds for bifurcated vascular grafts. However, fabrication of complex 3D nanofibrous tubular scaffolds with bifurcated or patient-specific shapes remains limited. In this study, a 3D hollow nanofibrous bifurcated-tubular scaffold was fabricated by the uniform and conformal deposition of electrospun nanofibers via conformal electrospinning. By conformal electrospinning, electrospun nanofibers are conformally deposited onto a complex shape, such as the bifurcated region, without large pores or defects. Owing to conformal electrospinning, a corner profile fidelity (FC), a measure of conformal deposition of electrospun nanofibers at the bifurcated region, was increased 4 times at the bifurcation angle (θB) of 60°, and all FC values of the scaffolds reached 100%, regardless of the θB. Furthermore, the thickness of the scaffolds could be controlled by varying the electrospinning time. Leakage-free liquid transfer was successfully achieved owing to the uniform and conformal deposition of electrospun nanofibers. Finally, the cytocompatibility and 3D mesh-based modeling of the scaffolds were demonstrated. Thus, conformal electrospinning can be used to fabricate leakage-free and complex 3D nanofibrous scaffolds for bifurcated vascular grafts.
Collapse
Affiliation(s)
- Jin Yeong Song
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Hyang Seob Lee
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Do Young Kim
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Hye Jin Yun
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
| | - Changryul Claud Yi
- Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
- Department of Plastic and Reconstructive Surgery, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, South Korea
| | - Sang Min Park
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| |
Collapse
|
12
|
Leite YKDC, Oliveira ACDJ, Quelemes PV, Neto NMA, de Carvalho CES, Soares Rodrigues HW, Alves MMDM, Carvalho FADA, Arcanjo DDR, da Silva-Filho EC, Durazzo A, Lucarini M, de Carvalho MAM, da Silva DA, Leite JRDSDA. Novel Scaffold Based on Chitosan Hydrogels/Phthalated Cashew Gum for Supporting Human Dental Pulp Stem Cells. Pharmaceuticals (Basel) 2023; 16:266. [PMID: 37259411 PMCID: PMC9960865 DOI: 10.3390/ph16020266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are structures that have value for application in the area of tissue engineering because they mimic the extracellular matrix. Naturally obtained polysaccharides, such as chitosan (CH) and cashew gum, are materials with the ability to form polymeric networks due to their physicochemical properties. This research aimed to develop a scaffold based on chitosan and phthalated cashew tree gum and test it as a support for the growth of human mesenchymal stem cells. In this study, phthalation in cashew gum (PCG) was performed by using a solvent-free route. PCG-CH scaffold was developed by polyelectrolyte complexation, and its ability to support adherent stem cell growth was evaluated. The scaffold showed a high swelling rate. The pore sizes of the scaffold were analyzed by scanning electron microscopy. Human dental pulp stem cells (hDPSCs) were isolated, expanded, and characterized for their potential to differentiate into mesenchymal lineages and for their immunophenotypic profile. Isolated mesenchymal stem cells presented fibroblastoid morphology, plastic adhesion capacity, and differentiation in osteogenic, adipogenic, and chondrogenic lineages. Mesenchymal stem cells were cultured in scaffolds to assess cell adhesion and growth. The cells seeded on the scaffold showed typical morphology, attachment, and adequate distribution inside the matrix pores. Thus, cells seeded in the scaffold may improve the osteoinductive and osteoconductive properties of these biomaterials.
Collapse
Affiliation(s)
- Yulla Klinger de Carvalho Leite
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Antônia Carla de Jesus Oliveira
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta of Parnaiba, UFDPar, Parnaiba 64202-020, PI, Brazil
| | - Patrick Veras Quelemes
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta of Parnaiba, UFDPar, Parnaiba 64202-020, PI, Brazil
| | - Napoleão Martins Argolo Neto
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Camila Ernanda Sousa de Carvalho
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Huanna Waleska Soares Rodrigues
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Michel Muálem de Moraes Alves
- Department of Veterinary Morphophysiology, Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
- Laboratory of Antileishmania Activity, Medicinal Plants Research Center, Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Fernando Aécio de Amorim Carvalho
- Laboratory of Antileishmania Activity, Medicinal Plants Research Center, Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Antileishmania Activity, Medicinal Plants Research Center, Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Edson Cavalcanti da Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Maria Acelina Martins de Carvalho
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piaui, UFPI, Teresina 64049-550, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta of Parnaiba, UFDPar, Parnaiba 64202-020, PI, Brazil
| | - José Roberto de Souza de Almeida Leite
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta of Parnaiba, UFDPar, Parnaiba 64202-020, PI, Brazil
- Area Morphology, Faculty of Medicine, University of Brasília (UnB), Campus Darcy Ribeiro, Brasília 70910-900, DF, Brazil
| |
Collapse
|
13
|
Ryltseva GA, Dudaev AE, Menzyanova NG, Volova TG, Alexandrushkina NA, Efimenko AY, Shishatskaya EI. Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells. J Funct Biomater 2023; 14:jfb14020085. [PMID: 36826884 PMCID: PMC9959859 DOI: 10.3390/jfb14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.
Collapse
Affiliation(s)
- Galina A. Ryltseva
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Natalia G. Menzyanova
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia A. Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anastasia Yu. Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| |
Collapse
|
14
|
Abstract
Vascular transplantation is an effective and common treatment for cardiovascular disease (CVD). However, the low biocompatibility of implants is a major problem that hinders its clinical application. Surface modification of implants with extracellular matrix (ECM) coatings is an effective approach to improve the biocompatibility of cardiovascular materials. The complete ECM seems to have better biocompatibility, which may give cardiovascular biomaterials a more functional surface. The use of one or several ECM proteins to construct a surface allows customization of coating composition and structure, possibly resulting in some unique functions. ECM is a complex three-dimensional structure composed of a variety of functional biological macromolecules, and changes in the composition will directly affect the function of the coating. Therefore, understanding the chemical composition of the ECM and its interaction with cells is beneficial to provide new approaches for coating surface modification. This article reviews novel ECM coatings, including coatings composed of intact ECM and biomimetic coatings tailored from several ECM proteins, and introduces new advances in coating fabrication. These ECM coatings are effective in improving the biocompatibility of vascular grafts.
Collapse
|
15
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
16
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|