1
|
Yang S, Leung AYP, Wang Z, Yiu CKY, Dissanayaka WL. Proanthocyanidin surface preconditioning of dental pulp stem cell spheroids enhances dimensional stability and biomineralization in vitro. Int Endod J 2024; 57:1639-1654. [PMID: 39046812 DOI: 10.1111/iej.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
AIM Lack of adequate mechanical strength and progressive shrinkage over time remain challenges in scaffold-free microtissue-based dental pulp regeneration. Surface collagen cross-linking holds the promise to enhance the mechanical stability of microtissue constructs and trigger biological regulations. In this study, we proposed a novel strategy for surface preconditioning microtissues using a natural collagen cross-linker, proanthocyanidin (PA). We evaluated its effects on cell viability, tissue integrity, and biomineralization of dental pulp stem cell (DPSCs)-derived 3D cell spheroids. METHODOLOGY Microtissue and macrotissue spheroids were fabricated from DPSCs and incubated with PA solution for surface collagen cross-linking. Microtissue viability was examined by live/dead staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, with transverse dimension change monitored. Microtissue surface stiffness was measured by an atomic force microscope (AFM). PA-preconditioned microtissues and macrotissues were cultured under basal or osteogenic conditions. Immunofluorescence staining of PA-preconditioned microtissues was performed to detect dentin sialophosphoprotein (DSPP) and F-actin expressions. PA-preconditioned macrotissues were subjected to histological analysis, including haematoxylin-eosin (HE), alizarin red, and Masson trichrome staining. Immunohistochemistry staining was used to detect alkaline phosphatase (ALP) and dentin matrix acidic phosphoprotein 1 (DMP-1) expressions. RESULTS PA preconditioning had no adverse effects on microtissue spheroid viability and increased surface stiffness. It reduced dimensional shrinkage for over 7 days in microtissues and induced a larger transverse-section area in the macrotissue. PA preconditioning enhanced collagen formation, mineralized nodule formation, and elevated ALP and DMP-1 expressions in macrotissues. Additionally, PA preconditioning induced higher F-actin and DSPP expression in microtissues, while inhibition of F-actin activity by cytochalasin B attenuated PA-induced dimensional change and DSPP upregulation. CONCLUSION PA surface preconditioning of DPSCs spheroids demonstrates excellent biocompatibility while effectively enhancing tissue structure stability and promoting biomineralization. This strategy strengthens tissue integrity in DPSC-derived spheroids and amplifies osteogenic differentiation potential, advancing scaffold-free tissue engineering applications in regenerative dentistry.
Collapse
Affiliation(s)
- Shengyan Yang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Andy Yu Pan Leung
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zheng Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry & Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Yoo S, Lee HJ. Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology. Cells Tissues Organs 2024; 214:128-147. [PMID: 39265553 PMCID: PMC11965833 DOI: 10.1159/000541416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations. BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations.
Collapse
Affiliation(s)
- Seungyeop Yoo
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
3
|
Li L, Li H, Wang Q, Xue Y, Dai Y, Dong Y, Shao M, Lyu F. Hydroxyapatite Nanoparticles Promote the Development of Bone Microtissues for Accelerated Bone Regeneration by Activating the FAK/Akt Pathway. ACS Biomater Sci Eng 2024; 10:4463-4479. [PMID: 38848471 DOI: 10.1021/acsbiomaterials.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Scaffold-free bone microtissues differentiated from mesenchymal stem cell (MSC) spheroids offer great potential for bottom-up bone tissue engineering as a direct supply of cells and osteogenic signals. Many biomaterials or biomolecules have been incorporated into bone microtissues to enhance their osteogenic abilities, but these materials are far from clinical approval. Here, we aimed to incorporate hydroxyapatite (HAP) nanoparticles, an essential component of bone matrix, into MSC spheroids to instruct their osteogenic differentiation into bone microtissues and further self-organization into bone organoids with a trabecular structure. Furthermore, the biological interaction between HAP nanoparticles and MSCs and the potential molecular mechanisms in the bone development of MSC spheroids were investigated by both in vitro and in vivo studies. As a result, improved cell viability and osteogenic abilities were observed for the MSC spheroids incorporated with HAP nanoparticles at a concentration of 30 μg/mL. HAP nanoparticles could promote the sequential expression of osteogenic markers (Runx2, Osterix, Sclerostin), promote the expression of bone matrix proteins (OPN, OCN, and Collagen I), promote the mineralization of the bone matrix, and thus promote the bone development of MSC spheroids. The differentiated bone microtissues could further self-organize into linear, lamellar, and spatial bone organoids with trabecular structures. More importantly, adding FAK or Akt inhibitors could decrease the level of HAP-induced osteogenic differentiation of bone microtissues. Finally, excellent new bone regeneration was achieved after injecting bone microtissues into cranial bone defect models, which could also be eliminated by the Akt inhibitor. In conclusion, HAP nanoparticles could promote the development of bone microtissues by promoting the osteogenic differentiation of MSCs and the formation and mineralization of the bone matrix via the FAK/Akt pathway. The bone microtissues could act as individual ossification centers and self-organize into macroscale bone organoids, and in this meaning, the bone microtissues could be called microscale bone organoids. Furthermore, the bone microtissues revealed excellent clinical perspectives for injectable cellular therapies for bone defects.
Collapse
Affiliation(s)
- Linli Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Qi Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yitong Xue
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Youhai Dong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
4
|
Bigham A, Fasolino I, Borsacchi S, Valente C, Calucci L, Turacchio G, Pannico M, Serrano-Ruiz M, Ambrosio L, Raucci MG. A theragenerative bio-nanocomposite consisting of black phosphorus quantum dots for bone cancer therapy and regeneration. Bioact Mater 2024; 35:99-121. [PMID: 38283385 PMCID: PMC10818087 DOI: 10.1016/j.bioactmat.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Recently, the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ. This study is focused on the design of a new theragenerative nanocomposite composed of an amphiphilic non-ionic surfactant (Pluronic F127), bioactive glass (BG), and black phosphorus (BP). The nanocomposite was prepared through a two-step synthetic strategy, including a microwave treatment that turned BP nanosheets (BPNS) into quantum dots (BPQDs) with 5 ± 2 nm dimensions in situ. The effects of surfactant and microwave treatment were assessed in vitro: the surfactant distributes the ions homogenously throughout the composite and the microwave treatment chemically stabilizes the composite. The presence of BP enhanced bioactivity and promoted calcium phosphate formation in simulated body fluid. The inherent anticancer activity of BP-containing nanocomposites was tested against osteosarcoma cells in vitro, finding that 150 μg mL-1 was the lowest concentration which prevented the proliferation of SAOS-2 cells, while the counterpart without BP did not affect the cell growth rate. Moreover, the apoptosis pathways were evaluated and a mechanism of action was proposed. NIR irradiation was applied to induce further proliferation suppression on SAOS-2 cells through hyperthermia. The inhibitory effects of bare BP nanomaterials and nanocomposites on the migration and invasion of bone cancer, breast cancer, and prostate cancer cells were assessed in vitro to determine the anticancer potential of nanomaterials against primary and secondary bone cancers. The regenerative behavior of the nanocomposites was tested with healthy osteoblasts and human mesenchymal stem cells; the BPQDs-incorporated nanocomposite significantly promoted the proliferation of osteoblast cells and induced the osteogenic differentiation of stem cells. This study introduces a new multifunctional theragenerative platform with promising potential for simultaneous bone cancer therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| | - Silvia Borsacchi
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Research Council-CNR, via G. Moruzzi 1, 56124, Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126, Pisa, Italy
| | - Carmen Valente
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Lucia Calucci
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Research Council-CNR, via G. Moruzzi 1, 56124, Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126, Pisa, Italy
| | - Gabriele Turacchio
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Marianna Pannico
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy (IPCB-CNR), Pozzuoli, Italy
| | - Manuel Serrano-Ruiz
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, National Research Council-CNR, Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| |
Collapse
|
5
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
6
|
Chien MH, Chen CY, Yeh CL, Huang HY, Chou HY, Chen YW, Lin CP. Biofabricated poly (γ-glutamic acid) bio-ink reinforced with calcium silicate exhibiting superior mechanical properties and biocompatibility for bone regeneration. J Dent Sci 2024; 19:479-491. [PMID: 38303841 PMCID: PMC10829714 DOI: 10.1016/j.jds.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/04/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose The modification in 3D hydrogels, tissue engineering, and biomaterials science has enabled us to fabricate novel substitutes for bone regeneration. This study aimed to combine different biomaterials by 3D technique to fabricate a promising all-rounded hydrogel for bone regeneration. Materials and methods In this study, glycidyl methacrylate (GMA)-modified poly γ-glutamic acid (γ-PGA-GMA) hydrogels with calcium silicate (CS) hydrogel of different concentrations were fabricated by a 3D printing technique, and their biocompatibility and capability in bone regeneration were also evaluated. Results The results showed that CS γ-PGA-GMA could be successfully fabricated, and the presence of CS enhanced the rheological and mechanical properties of γ-PGA-GMA hydrogels, thus making them more adept at 3D printing and implantations. SEM images of the surface structure showed that higher CS concentrations (5% and 10%) contributed to denser surface architectures, thus achieving improved cellular adhesion and stem cell proliferation. Furthermore, higher concentrations of CS resulted in elevated expressions of osteogenic-related markers such as alkaline phosphatase (ALP) and osteocalcin (OC), as well as enhanced calcium deposition represented by the increased Alizarin Red S staining. In vivo studies referring to critical defects of rabbit femur further showed that the existence of hydrogels alone was able to induce partial bone regeneration, demonstrated by the results from quantitative and qualitative analysis of micro-CT scans. However, CS alterations caused significant increases in bone regeneration, as indicated by micro-CT and histological staining. Conclusion These results robustly suggest combining different biomaterials is crucial to producing a well-rounded hydrogel for tissue regeneration. We hope this study could be applied as a platform for others to brainstorm potential out-of-the-box solutions, contributing to developing high-potential biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Ming-Hui Chien
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Liang Yeh
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung, Taiwan
| | - Han-Yi Chou
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Gomez-Cerezo MN, Perevoshchikova N, Ruan R, Moerman KM, Bindra R, Lloyd DG, Zheng MH, Saxby DJ, Vaquette C. Additively manufactured polyethylene terephthalate scaffolds for scapholunate interosseous ligament reconstruction. BIOMATERIALS ADVANCES 2023; 149:213397. [PMID: 37023566 DOI: 10.1016/j.bioadv.2023.213397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The regeneration of the ruptured scapholunate interosseous ligament (SLIL) represents a clinical challenge. Here, we propose the use of a Bone-Ligament-Bone (BLB) 3D-printed polyethylene terephthalate (PET) scaffold for achieving mechanical stabilisation of the scaphoid and lunate following SLIL rupture. The BLB scaffold featured two bone compartments bridged by aligned fibres (ligament compartment) mimicking the architecture of the native tissue. The scaffold presented tensile stiffness in the range of 260 ± 38 N/mm and ultimate load of 113 ± 13 N, which would support physiological loading. A finite element analysis (FEA), using inverse finite element analysis (iFEA) for material property identification, showed an adequate fit between simulation and experimental data. The scaffold was then biofunctionalized using two different methods: injected with a Gelatin Methacryloyl solution containing human mesenchymal stem cell spheroids (hMSC) or seeded with tendon-derived stem cells (TDSC) and placed in a bioreactor to undergo cyclic deformation. The first approach demonstrated high cell viability, as cells migrated out of the spheroid and colonised the interstitial space of the scaffold. These cells adopted an elongated morphology suggesting the internal architecture of the scaffold exerted topographical guidance. The second method demonstrated the high resilience of the scaffold to cyclic deformation and the secretion of a fibroblastic related protein was enhanced by the mechanical stimulation. This process promoted the expression of relevant proteins, such as Tenomodulin (TNMD), indicating mechanical stimulation may enhance cell differentiation and be useful prior to surgical implantation. In conclusion, the PET scaffold presented several promising characteristics for the immediate mechanical stabilisation of disassociated scaphoid and lunate and, in the longer-term, the regeneration of the ruptured SLIL.
Collapse
|
9
|
Li HX, Zhao KC, Jiang JJ, Zhu QS. Research progress on black phosphorus hybrids hydrogel platforms for biomedical applications. J Biol Eng 2023; 17:8. [PMID: 36717887 PMCID: PMC9887857 DOI: 10.1186/s13036-023-00328-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Hydrogels, also known as three-dimensional, flexible, and polymer networks, are composed of natural and/or synthetic polymers with exceptional properties such as hydrophilicity, biocompatibility, biofunctionality, and elasticity. Researchers in biomedicine, biosensing, pharmaceuticals, energy and environment, agriculture, and cosmetics are interested in hydrogels. Hydrogels have limited adaptability for complicated biological information transfer in biomedical applications due to their lack of electrical conductivity and low mechanical strength, despite significant advances in the development and use of hydrogels. The nano-filler-hydrogel hybrid system based on supramolecular interaction between host and guest has emerged as one of the potential solutions to the aforementioned issues. Black phosphorus, as one of the representatives of novel two-dimensional materials, has gained a great deal of interest in recent years owing to its exceptional physical and chemical properties, among other nanoscale fillers. However, a few numbers of publications have elaborated on the scientific development of black phosphorus hybrid hydrogels extensively. In this review, this review thus summarized the benefits of black phosphorus hybrid hydrogels and highlighted the most recent biological uses of black phosphorus hybrid hydrogels. Finally, the difficulties and future possibilities of the development of black phosphorus hybrid hydrogels are reviewed in an effort to serve as a guide for the application and manufacture of black phosphorus -based hydrogels. Recent applications of black phosphorus hybrid hydrogels in biomedicine.
Collapse
Affiliation(s)
- Hao-xuan Li
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Kun-chi Zhao
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Jia-jia Jiang
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Qing-san Zhu
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| |
Collapse
|
10
|
Liu H, Wang C, Sun X, Zhan C, Li Z, Qiu L, Luo R, Liu H, Sun X, Li R, Zhang J. Silk Fibroin/Collagen/Hydroxyapatite Scaffolds Obtained by 3D Printing Technology and Loaded with Recombinant Human Erythropoietin in the Reconstruction of Alveolar Bone Defects. ACS Biomater Sci Eng 2022; 8:5245-5256. [PMID: 36336837 DOI: 10.1021/acsbiomaterials.2c00690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fast osteogenesis of the large alveolar fossa and the maintenance of the height of the alveolar ridge after tooth extraction have always been a clinical challenge. Therefore, this work describes the creation of innovative silk fibroin/collagen/hydroxyapatite (SCH) biological scaffolds by 3D printing technology, which are loaded with recombinant human erythropoietin (rh-EPO) for the reconstruction of bone defects. Low-temperature 3D printing can maintain the biological activity of silk fibroin and collagen. The SCH scaffolds showed the ideal water absorption and porosity, being a sustained-release carrier of rh-EPO. The optimized scaffolds had ideal mechanical properties in vitro, and MC3T3-E1 cells could easily adhere and proliferate on it. In vivo experiments in rabbits demonstrated that the composite scaffolds gradually degraded and promoted the accumulation and proliferation of osteoblasts and the formation of collagen fibers, significantly promoting the reconstruction of mandibular defects. In this study, a novel composite biological scaffold was prepared using 3D printing technology, and the scaffold was innovatively combined with the multifunctional growth factor rh-EPO. This provides a new optimized composite material for the reconstruction of irregular mandible defects, and this biomaterial is promising for clinical reconstruction of alveolar bone defects.
Collapse
Affiliation(s)
- Han Liu
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Chao Wang
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Xiaoqian Sun
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Chaojun Zhan
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Zixiao Li
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100034, China
| | - Rui Luo
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Hao Liu
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Xiaodi Sun
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Jun Zhang
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| |
Collapse
|
11
|
Lee S, Choi S, Byun H, Lee J, Kwon H, Shin H. Composite Multicellular Spheroids Containing Fibers with Pores and Epigallocatechin Gallate (EGCG) Coating on the Surface for Enhanced Proliferation of Stem Cells. Macromol Biosci 2022; 22:e2200195. [PMID: 36111565 DOI: 10.1002/mabi.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
Multicellular spheroids are formed by strong cell-cell and cell-extracellular matrix interactions and are widely utilized in tissue engineering for therapeutic treatments or ex vivo tissue modeling. However, diffusion of oxygen into the spheroid gradually decreases, forming a necrotic core. In this study, polycaprolactone (PCL) fibers with pores and epigallocatechin gallate (EGCG) coating on their surface to provide a structural framework within the spheroids and investigated their ability to mitigate diffusional limitation and control over the proliferation of human adipose-derived stem cells (hADSCs) is engineered. The DNA content of composite spheroids prepared from fibers and hADSCs decreased in unadjusted cells (1224 ± 134 ng), in those with fibers with a smooth surface (SF) (1447 ± 331 ng), and in those EGCG-coated with SF (E-SF) (1437 ± 289 ng). Cells with fibers with pores on the surface (PF) (2020 ± 32 ng) and those with EGCG-coated PF (E-PF) (1911 ± 80 ng) increased after 7 days of culture, with a significantly greater number of proliferating cells (29 ± 8% and 30 ± 8%, respectively). These results indicate that physical modification through the formation of pores on the fiber surface alleviates diffusion limitation of composite spheroids, playing a dominant role over chemical modification.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Soomi Choi
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyunseok Kwon
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
12
|
Jing X, Xiong Z, Lin Z, Sun T. The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14122634. [PMID: 36559127 PMCID: PMC9787998 DOI: 10.3390/pharmaceutics14122634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, research on and the application of nanomaterials such as graphene, carbon nanotubes, and metal-organic frameworks has become increasingly popular in tissue engineering. In 2014, a two-dimensional sheet of black phosphorus (BP) was isolated from massive BP crystals. Since then, BP has attracted significant attention as an emerging nanomaterial. BP possesses many advantages such as light responsiveness, electrical conductivity, degradability, and good biocompatibility. Thus, it has broad prospects in biomedical applications. Moreover, BP is composed of phosphorus, which is a key bone tissue component with good biocompatibility and osteogenic repair ability. Thereby, BP exhibits excellent advantages for application in bone tissue engineering. In this review, the structure and the physical and chemical properties of BP are described. In addition, the current applications of BP in bone tissue engineering are reviewed to aid the future research and application of BP.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zian Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
13
|
Lyu H, Zhou X, Qian Y, Liu X, Gopinathan G, Pandya M, Qin C, Luan X, Diekwisch TGH. Long-acting PFI-2 small molecule release and multilayer scaffold design achieve extensive new formation of complex periodontal tissues with unprecedented fidelity. Biomaterials 2022; 290:121819. [PMID: 36209579 DOI: 10.1016/j.biomaterials.2022.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/20/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
The faithful engineering of complex human tissues such as the bone/soft tissue/mineralized tissue interface in periodontal tissues requires innovative molecular cues in conjunction with tailored scaffolds. To address the loss of periodontal bone and connective tissues following periodontal disease, we have generated a polydopamine and collagen coated electrospun PLGA-PCL (PP) scaffold enriched with the small molecule mediator PFI-2 (PP-PFI-pDA-COL-PFI). In vitro 3D studies using PDL progenitors revealed that the PP-PFI-pDA-COL-PFI scaffold substantially enhanced Alizarin Red staining, increased Ca/P ratios 4-fold, and stimulated cell proliferation more than 12-fold compared to PP-controls, suggestive of its potential for mineralized tissue engineering. When applied in our experimental periodontitis model, the PP-PFI-pDA-COL-PFI scaffold resulted in a substantial 34% reduction in alveolar bone defect height, a 25% root-length gain in periodontal attachment, and the formation of highly ordered regenerated acellular cementum twice as thick as in controls. Explaining the mechanism of PFI-2 mineralized tissue regeneration in periodontal tissues, PFI-2 inhibited SETD7-mediated β-Catenin protein methylation and increased β-Catenin nuclear localization. Together, dual-level PFI-2 incorporation into a degradable, dopamine/collagen coated PLGA/PCL scaffold backbone resulted in the regeneration of the tripartite periodontal complex with unprecedented fidelity, including periodontal attachment and new formation of mineralized tissues in inflamed periodontal environments.
Collapse
Affiliation(s)
- Huling Lyu
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Xuefeng Zhou
- UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunzhu Qian
- UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA; Center for Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Gokul Gopinathan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Mirali Pandya
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xianghong Luan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA
| | - Thomas G H Diekwisch
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA.
| |
Collapse
|
14
|
Yuan B, Zhou X, Li Y, Zhao Y, Xue M, Guo Q, Zheng G, Chen X, Lin H, Guo X. Black-Phosphorus-Nanosheet-Reinforced Coating of Implants for Sequential Biofilm Ablation and Bone Fracture Healing Acceleration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47036-47051. [PMID: 36203356 DOI: 10.1021/acsami.2c13566] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Incurable implant-related infection may cause catastrophic consequences due to the existence of a biofilm that resists the infiltration of host immune cells and antibiotics. Innovative approaches inspired by nanomedicine, e.g., engineering innovative multifunctional bionic coating systems on the surface of implants, are becoming increasingly attractive. Herein, 2D black phosphorus nanosheets (BPs) were loaded onto a hydroxyapatite (HA)-coated metal implant to construct a BPs@HA composite coating. With its photothermal conversion effect and in situ biomineralization, the BPs@HA coating shows excellent performances in ablating the bacterial biofilm and accelerating fracture healing, which were verified through both in vitro and in vivo studies. Moreover, differentially expressed genes of bone formation and bone mesenchymal stem cells (BMSCs) regulated by the BPs@HA coating were identified using absolute quantitative transcriptome sequencing followed by the screening of gene differential expressions. A functional enrichment analysis reveals that the expression of core markers related to BMSC differentiation and bone formation could be effectively regulated by BPs through a metabolism-related pathway. This work not only illustrates the great potential in clinical application of the BPs@HA composite coating to eliminate bacteria and accelerate bone fracture healing but also contributes to an understanding of the underlying molecular mechanism of osteogenesis physiological function regulation based on an analysis of absolute quantitative transcriptome sequencing.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| | - Xin Zhou
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| | - Yingke Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| | - Yin Zhao
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| | - Mintao Xue
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| | - Qunfeng Guo
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| | - Gang Zheng
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| | - Xiongsheng Chen
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| | - Han Lin
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
| | - Xiang Guo
- Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai200003, People's Republic of China
| |
Collapse
|
15
|
Xu H, Liu X, Park S, Terzic A, Lu L. Size-dependent osteogenesis of black phosphorus in nanocomposite hydrogel scaffolds. J Biomed Mater Res A 2022; 110:1488-1498. [PMID: 35319809 DOI: 10.1002/jbm.a.37382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 12/14/2022]
Abstract
A promising new strategy emerged in bone tissue engineering is to incorporate black phosphorus (BP) into polymer scaffolds, fabricating nanocomposite hydrogel platforms with biocompatibility, degradation controllability, and osteogenic capacity. BP quantum dot is a new concept and stands out recently among the BP family due to its tiny structure and a series of excellent characteristics. In this study, BP was processed into nanosheets of three different sizes via different exfoliation strategies and then incorporated into cross-linkable oligo[poly(ethylene glycol) fumarate] (OPF) to produce nanocomposite hydrogels for bone regeneration. The three different BP nanosheets were designated as BP-L, BP-M, and BP-S, with a corresponding diameter of 242.3 ± 90.0, 107.1 ± 47.9, and 18.8 ± 4.6 nm. The degradation kinetics and osteogenic capacity of MC3T3 pre-osteoblasts in vitro were both dependent on the BP size. BP exhibited a controllable degradation rate, which increased with the decrease of the size of the nanosheets, coupled with the release of phosphate in vitro. The osteogenic capacity of the hydrogels was promoted with the addition of all BP nanosheets, compared with OPF hydrogel alone. The smallest BP quantum dots was shown to be optimal in enhancing MC3T3 cell behaviors, including spreading, distribution, proliferation, and differentiation on the OPF hydrogels. These results reinforced that the supplementation of BP quantum dots into OPF nanocomposite hydrogel scaffolds could potentially find application in the restoration of bone defects.
Collapse
Affiliation(s)
- Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Hu X, Xia Z, Cai K. Recent advances of 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. J Mater Chem B 2022; 10:1486-1507. [DOI: 10.1039/d1tb02537f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have been increasingly recognized as resources for disease treatments and regenerative medicine. Meanwhile, the unique chemical and physical properties of hydrogels provide innate advantages to achieve...
Collapse
|
17
|
SDF-1 α/OPF/BP Composites Enhance the Migrating and Osteogenic Abilities of Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:1938819. [PMID: 34434236 PMCID: PMC8380507 DOI: 10.1155/2021/1938819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
In situ cell recruitment is a promising regenerative medicine strategy with the purpose of tissue regeneration without stem cell transplantation. This chemotaxis-based strategy is aimed at ensuring a restorative environment through the release of chemokines that promote site-specific migration of healing cell populations. Stromal cell-derived factor-1α (SDF-1α) is a critical chemokine that can regulate the migration of mesenchymal stem cells (MSCs). Accordingly, here, SDF-1α-loaded microporous oligo[poly(ethylene glycol) fumarate]/bis[2-(methacryloyloxy)ethyl] phosphate composites (SDF-1α/OPF/BP) were engineered and probed. SDF-1α/OPF/BP composites were loaded with escalating SDF-1α concentrations, namely, 0 ng/ml, 50 ng/ml, 100 ng/ml, and 200 ng/ml, and were cocultured with MSC. Scratching assay, Transwell assay, and three-dimensional migration model were utilized to assess the migration response of MSCs. Immunofluorescence staining of Runx2 and osteopontin (OPN), ELISA assay of osteocalcin (OCN) and alkaline phosphatase (ALP), and Alizarin Red S staining were conducted to assess the osteogenesis of MSCs. All SDF-1α/OPF/BP composites engendered a release of SDF-1α (>80%) during the first four days. SDF-1α released from the composites significantly promoted migration and osteogenic differentiation of MSCs documented by upregulated expression of osteogenic-related proteins, ALP, Runx2, OCN, and OPN. SDF-1α at 100 ng/ml was optimal for enhanced migration and osteogenic proficiency. Thus, designed SDF-1α/OPF/BP composites were competent in promoting the homing and osteogenesis of MSCs and thus offer a promising bioactive scaffold candidate for on-demand bone tissue regeneration.
Collapse
|
18
|
Zhu M, Hua T, Ouyang T, Qian H, Yu B. Applications of Mesenchymal Stem Cells in Liver Fibrosis: Novel Strategies, Mechanisms, and Clinical Practice. Stem Cells Int 2021; 2021:6546780. [PMID: 34434239 PMCID: PMC8380491 DOI: 10.1155/2021/6546780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis is a common result of most chronic liver diseases, and advanced fibrosis often leads to cirrhosis. Currently, there is no effective treatment for liver cirrhosis except liver transplantation. Therefore, it is important to carry out antifibrosis treatment to reverse liver damage in the early stage of liver fibrosis. Mesenchymal stem cells (MSCs) are the most widely used stem cells in the field of regenerative medicine. The preclinical and clinical research results of MSCs in the treatment of liver fibrosis and cirrhosis show that MSC administration is a promising treatment for liver fibrosis and cirrhosis. MSCs reverse liver fibrosis and increase liver function mainly through differentiation into hepatocytes, immune regulation, secretion of cytokines and other nutritional factors, reduction of hepatocyte apoptosis, and promotion of hepatocyte regeneration. Recently, many studies provided a variety of new methods and strategies to improve the effect of MSCs in the treatment of liver fibrosis. In this review, we summarized the current effective methods and strategies and their potential mechanisms of MSCs in the treatment of liver fibrosis, as well as the current research progress in clinical practice. We expect to achieve complete reversal of liver injury with MSC-based therapy in the future.
Collapse
Affiliation(s)
- Mengmei Zhu
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Tianzhen Hua
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Tao Ouyang
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Huofu Qian
- 2Department of Gastroenterology, The Second People's Hospital of Taizhou, China
| | - Bing Yu
- 1Department of Cell Biology, Center for Stem Cell and Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| |
Collapse
|