1
|
Hong Y, Zhong L, Lv X, Liu Q, Fu L, Zhou D, Yu N. Application of spectral CT in diagnosis, classification and prognostic monitoring of gastrointestinal cancers: progress, limitations and prospects. Front Mol Biosci 2023; 10:1284549. [PMID: 37954980 PMCID: PMC10634296 DOI: 10.3389/fmolb.2023.1284549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrointestinal (GI) cancer is the leading cause of cancer-related deaths worldwide. Computed tomography (CT) is an important auxiliary tool for the diagnosis, evaluation, and prognosis prediction of gastrointestinal tumors. Spectral CT is another major CT revolution after spiral CT and multidetector CT. Compared to traditional CT which only provides single-parameter anatomical diagnostic mode imaging, spectral CT can achieve multi-parameter imaging and provide a wealth of image information to optimize disease diagnosis. In recent years, with the rapid development and application of spectral CT, more and more studies on the application of spectral CT in the characterization of GI tumors have been published. For this review, we obtained a substantial volume of literature, focusing on spectral CT imaging of gastrointestinal cancers, including esophageal, stomach, colorectal, liver, and pancreatic cancers. We found that spectral CT can not only accurately stage gastrointestinal tumors before operation but also distinguish benign and malignant GI tumors with improved image quality, and effectively evaluate the therapeutic response and prognosis of the lesions. In addition, this paper also discusses the limitations and prospects of using spectral CT in GI cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yuqin Hong
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Lijuan Zhong
- Department of Radiology, The People’s Hospital of Leshan, Leshan, China
| | - Xue Lv
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Qiao Liu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Langzhou Fu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Daiquan Zhou
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| | - Na Yu
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, China
| |
Collapse
|
2
|
Cressoni C, Vurro F, Milan E, Muccilli M, Mazzer F, Gerosa M, Boschi F, Spinelli AE, Badocco D, Pastore P, Delgado NF, Collado MH, Marzola P, Speghini A. From Nanothermometry to Bioimaging: Lanthanide-Activated KY 3F 10 Nanostructures as Biocompatible Multifunctional Tools for Nanomedicine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12171-12188. [PMID: 36826830 PMCID: PMC9999348 DOI: 10.1021/acsami.2c22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Lanthanide-activated fluoride-based nanostructures are extremely interesting multifunctional tools for many modern applications in nanomedicine, e.g., bioimaging, sensing, drug delivery, and photodynamic therapy. Importantly, environmental-friendly preparations using a green chemistry approach, as hydrothermal synthesis route, are nowadays highly desirable to obtain colloidal nanoparticles, directly dispersible in hydrophilic media, as physiological solution. The nanomaterials under investigation are new KY3F10-based citrate-capped core@shell nanostructures activated with several lanthanide ions, namely, Er3+, Yb3+, Nd3+, and Gd3+, prepared as colloidal water dispersions. A new facile microwave-assisted synthesis has been exploited for their preparation, with significant reduction of the reaction times and a fine control of the nanoparticle size. These core@shell multifunctional architectures have been investigated for use as biocompatible and efficient contrast agents for optical, magnetic resonance imaging (MRI) and computerized tomography (CT) techniques. These multifunctional nanostructures are also efficient noninvasive optical nanothermometers. In fact, the lanthanide emission intensities have shown a relevant relative variation as a function of the temperature, in the visible and near-infrared optical ranges, efficiently exploiting ratiometric intensity methods for optical thermometry. Importantly, in contrast with other fluoride hosts, chemical dissolution of KY3F10 citrate-capped nanocrystals in aqueous environment is very limited, of paramount importance for applications in biological fluids. Furthermore, due to the strong paramagnetic properties of lanthanides (e.g., Gd3+), and X-ray absorption of both yttrium and lanthanides, the nanostructures under investigation are extremely useful for MRI and CT imaging. Biocompatibility studies of the nanomaterials have revealed very low cytotoxicity in dfferent human cell lines. All these features point to a successful use of these fluoride-based core@shell nanoarchitectures for simultaneous diagnostics and temperature sensing, ensuring an excellent biocompatibility.
Collapse
Affiliation(s)
- Chiara Cressoni
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federica Vurro
- Division
of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
- University
Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Emil Milan
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matilde Muccilli
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesco Mazzer
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marco Gerosa
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federico Boschi
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Antonello Enrico Spinelli
- Experimental
Imaging Centre, San Raffaele Scientific
Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Denis Badocco
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Paolo Pastore
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Natalia Fernández Delgado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Miriam Herrera Collado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Pasquina Marzola
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
3
|
The High-Energy Milling Preparation and Spectroscopic Characterization of Rare-Earth Ions Doped BaY2F8 Nanoparticles. CRYSTALS 2022. [DOI: 10.3390/cryst12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BaY2F8 nanoparticles (NPs), doped with Yb3+ and Er3+ ions, were successfully produced by high-energy ball-milling. High-quality monoclinic single crystals (sp. gr. C2/m, a = 0.6969(3), b = 1.0502(1), c = 0.4254(1) nm, β = 99.676°) grown from the melt by the Bridgman technique were used as raw materials. The prepared nanocrystals were comprehensively studied by X-ray diffraction analysis, transmission electron microscopy, and optical spectroscopy. The fabrication possibility of single-phase irregular shaped Ba(Y0.964Yb0.030Er0.006)2F8 NPs in the size range of 20–100 nm with a milling duration of 10 h at 600 rpm is demonstrated. Ba(Y0.964Yb0.030Er0.006)2F8 NPs show intense luminescence by both up- (λ = 540 and 650 nm) and down-conversion (λ = 1540 nm) mechanisms upon IR excitation (λ = 980 nm). A qualitative comparison of the spectroscopic characteristics of the produced Ba(Y0.964Yb0.030Er0.006)2F8 NPs with the initial bulk crystal and the widely used up-conversion β-Na1.5(Y1.17Yb0.3Er0.03)F6 NPs is presented. Experimental data offer great opportunities of the Ba(Y0.964Yb0.030Er0.006)2F8 NPs applications in nanophotonics and biotechnology. High-energy ball-milling has potential as a versatile method for the scalable production of fluoride nanoparticles.
Collapse
|
4
|
Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion Luminescent Nanoparticles-Evolving Role in Bioimaging, Biosensing, and Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2374. [PMID: 35407706 PMCID: PMC8999924 DOI: 10.3390/ma15072374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
Upconverting luminescent nanoparticles (UCNPs) are "new generation fluorophores" with an evolving landscape of applications in diverse industries, especially life sciences and healthcare. The anti-Stokes emission accompanied by long luminescence lifetimes, multiple absorptions, emission bands, and good photostability, enables background-free and multiplexed detection in deep tissues for enhanced imaging contrast. Their properties such as high color purity, high resistance to photobleaching, less photodamage to biological samples, attractive physical and chemical stability, and low toxicity are affected by the chemical composition; nanoparticle crystal structure, size, shape and the route; reagents; and procedure used in their synthesis. A wide range of hosts and lanthanide ion (Ln3+) types have been used to control the luminescent properties of nanosystems. By modification of these properties, the performance of UCNPs can be designed for anticipated end-use applications such as photodynamic therapy (PDT), high-resolution displays, bioimaging, biosensors, and drug delivery. The application landscape of inorganic nanomaterials in biological environments can be expanded by bridging the gap between nanoparticles and biomolecules via surface modifications and appropriate functionalization. This review highlights the synthesis, surface modification, and biomedical applications of UCNPs, such as bioimaging and drug delivery, and presents the scope and future perspective on Ln-doped UCNPs in biomedical applications.
Collapse
Affiliation(s)
- Palak Jethva
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|