1
|
Chen S, Xie C, Long X, Wang X, Li X, Liu P, Liu J, Wang Z. Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment. Tissue Eng Regen Med 2025; 22:195-210. [PMID: 39825992 PMCID: PMC11794904 DOI: 10.1007/s13770-024-00691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge. METHODS A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility. RESULTS The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively. CONCLUSION This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
Collapse
Affiliation(s)
- Shen Chen
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Chao Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410001, People's Republic of China
| | - Xiaoxi Long
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| | - Xianwei Wang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| | - Xudong Li
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Peng Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| | - Jiabin Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| |
Collapse
|
2
|
Ding X, Huang H, Chen Y, Wu J, Yan X, Ding Y, Dong J, Wang Y, Wang L, Tan Q, Yang C. Electrospun 11β-HSD1 Inhibitor-Loaded Scaffolds for Accelerating Diabetic Ulcer Healing. ACS APPLIED BIO MATERIALS 2025; 8:435-445. [PMID: 39690109 DOI: 10.1021/acsabm.4c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Diabetic ulcers (DUs) are a common and severe complication of diabetes, characterized by impaired wound healing due to a complex pathophysiological mechanism. Elevated levels of 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) in wounds have been demonstrated to modulate glucocorticoid activity, leading to delayed skin cell proliferation and restricted angiogenesis, ultimately hindering wound healing. In this study, we propose an electrospun poly(ε-caprolactone) (PCL) nanofiber scaffold doped with the 11β-HSD1 inhibitor BVT2733 (BPs) to prevent 11β-HSD1 activity during the diabetic wound healing process. The electrospun scaffold loaded with BVT2733 is designed to achieve localized inhibition of 11β-HSD1 in DUs. This scaffold exhibited a porous morphology and desirable drug-loading capacity, meeting the requirements for wound coverage and effective delivery of BVT2733 BPs. In vitro studies demonstrated that the sustained release of BVT2733 from the scaffold promoted skin cell proliferation and migration while stimulating angiogenesis by upregulating HIF1-α/VEGF expression. The therapeutic effect of the scaffold was further confirmed in a full-thickness wound model using diabetic mice. The mice treated with the scaffolds exhibited an accelerated wound healing rate, increased neovascularization, enhanced collagen deposition, and regeneration of skin appendages within 2 weeks postinjury. The findings here provide evidence for the use of 11β-HSD1 inhibitor-integrated biomaterials in treating DUs and represent a novel biological platform for modulating dysregulated mechanisms in DUs.
Collapse
Affiliation(s)
- Xiaofeng Ding
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Heyan Huang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yutong Chen
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xin Yan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Youjun Ding
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Qian Tan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxi Yang
- Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
3
|
Krammer J, Pichlmaier M, Stana J, Hagl C, Peterss S, Grab M, Grefen L. Multi-layered electrospun grafts for surgical repair: Biomimicking physiological ascending aortic compliance. J Appl Biomater Funct Mater 2025; 23:22808000251316728. [PMID: 39921458 DOI: 10.1177/22808000251316728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Commercially available Dacron (woven polyester) grafts are used for routine open surgical repair of thoracic aortic aneurysms. Despite durable and biocompatible, these grafts do not reproduce the natural mechanical properties of the aorta. Therefore, the aim of this project was to develop an innovative graft that additionally exhibits physiological aortic compliance. To achieve this result, multi-layered tubular aortic grafts were created by electrospinning of a thermoplastic polyurethane. To reduce permeability, a gelatin-coating was added. Three groups (G1-3; n = 5) with varying layer designs were evaluated regarding the main mechanical properties of vascular grafts such as suture retention strength, permeability and static and dynamic compliance. G3, which combined electrospinning with a stable silicone-coated inlay was chosen for the fabrication of medical grade thermoplastic polyurethane grafts (Gm; n = 6). Dynamic compliance values of 19.68 ± 11.5%/100 mmHg (50-90 mmHg), 15.18 ± 8.7%/100 mmHg (80-120 mmHg) and 14.56 ± 7.4%/100 mmHg (110-150 mmHg) were achieved. The compliance was higher than for Dacron and ePTFE grafts and comparable to the normal sized ascending aorta of around 16%/100 mmHg in a healthy human and porcine aortic compliance of 14.3%/100 mmHg. Static compliance was successfully tested up to 350 mmHg. No significant changes in graft diameter or delaminations of the graft layers were detected after compliance testing. Therefore, by combining electrospinning with a durable inlay, both elasticity and recoverability are obtained, resulting in a promising alternative to the gold-standard in open-surgical treatment of thoracic aortic pathologies.
Collapse
Affiliation(s)
- Julia Krammer
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Jan Stana
- Division of Vascular Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sven Peterss
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Grab
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Chair of Medical Materials and Implants, Technical University, Munich, Germany
| | - Linda Grefen
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
4
|
Łopianiak I, Butruk-Raszeja B, Wojasiński M. Shore hardness of bulk polyurethane affects the properties of nanofibrous materials differently. J Mech Behav Biomed Mater 2025; 161:106793. [PMID: 39520867 DOI: 10.1016/j.jmbbm.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The present study shows the effect of the hardness of bulk polyurethane on the properties of nanofibrous materials produced in the solution blow spinning process. This study focuses on nanofibrous materials made from medical-grade polyurethanes with different hardness values on the Shore scale, from 75A to 75D. We aimed to determine the effect of the intrinsic properties of polyurethane used to produce nanofibers on the tensile properties of the resulting nanofibrous materials and in vitro platelet adhesiveness. This study used a solution blow spinning process to produce nanofibrous materials from polyurethane solutions. It evaluates their properties using scanning electron microscopy, followed by porosity determination, tensile testing, and platelet adhesion assays. Generally, the bulk polymer's Shore hardness affects nanofibrous products' porosity and tensile properties. In the tested Shore hardness range, the most visible differences in material properties were observed for the fibers produced from the hardest (75D) and softest (75A) polyurethanes. The nanofibrous material produced using 75D polyurethane exhibited the highest porosity, up to approximately 0.87, owing to the low packing density of the stiff nanofibers. It also remained the stiffest, with the highest Young's modulus. On the other hand, the softest 75A polyurethane produced a less porous nanofibrous mat with the highest tensile strength among the tested polyurethanes. All tested nanofibrous materials retained their platelet adhesion resistance upon processing into nanofibers, with a mean platelet coverage below 1 % of the nanofibrous mat surface. The study results provide insights into the relationship between the hardness of bulk polyurethane and the properties of nanofibrous materials, which can be useful in various biomedical applications, particularly in producing tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Iwona Łopianiak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland; Doctoral School of Warsaw University of Technology, Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
5
|
Hernandez-Sanchez D, Comtois-Bona M, Muñoz M, Ruel M, Suuronen EJ, Alarcon EI. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024; 27:109845. [PMID: 38799581 PMCID: PMC11126982 DOI: 10.1016/j.isci.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Maxime Comtois-Bona
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Erik J. Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Emilio I. Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
6
|
Ozdemir S, Oztemur J, Sezgin H, Yalcin-Enis I. Optimization of Electrospun Bilayer Vascular Grafts through Assessment of the Mechanical Properties of Monolayers. ACS Biomater Sci Eng 2024; 10:960-974. [PMID: 38196384 DOI: 10.1021/acsbiomaterials.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Small-diameter vascular grafts must be obtained with the most appropriate materials and design selection to harmoniously display a variety of features, including adequate tensile strength, compliance, burst strength, biocompatibility, and biodegradability against challenging physiological and hemodynamic conditions. In this study, monolayer vascular grafts with randomly distributed or radially oriented fibers are produced using neat, blended, and copolymer forms of polycaprolactone (PCL) and poly(lactic acid) (PLA) via the electrospinning technique. The blending ratio is varied by increasing 10 in the range of 50-100%. Bilayer graft designs are realized by determining the layers with a random fiber distribution for the inner layer and radial fiber orientation for the outer layer. SEM analysis, wall thickness and fiber diameter measurements, tensile strength, elongation, burst strength, and compliance tests are done for both mono- and bilayer scaffolds. The findings revealed that the scaffolds made of neat PCL show more flexibility than the neat PLA samples, which possess higher tensile strength values than neat PCL scaffolds. Also, in blended samples, the tensile strength values do not show a significant improvement, whereas the elongation values are enhanced in tubular samples, depending on the blending ratio. Also, neat poly(l-lactide-co-caprolactone) (PLCL) samples have both higher elongation and strength values than neat and blended scaffolds, with some exceptions. The blended specimens comprising a combination of PCL and PLA, with blending ratios of 80/20 and 70/30, exhibited the most elevated burst pressures. Conversely, the PLCL scaffolds demonstrated superior compliance levels. These findings suggest that the blending approach and fiber orientation offer enhanced burst strength, while copolymer utilization in PLCL scaffolds without fiber alignment enhances their compliance properties. Thus, it is evident that using a copolymer instead of blending PCL and PLA and combining the PLCL layer with PCL and PLA monolayers in bilayer vascular graft design is promising in terms of mechanical and biological properties.
Collapse
Affiliation(s)
- Suzan Ozdemir
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Janset Oztemur
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Hande Sezgin
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| |
Collapse
|
7
|
Li Z, Giarto J, Zhang J, Kulkarni N, Mahalingam E, Klipstine W, Turng LS. Anti-thrombotic poly(AAm-co-NaAMPS)-xanthan hydrogel-expanded polytetrafluoroethylene (ePTFE) vascular grafts with enhanced endothelialization and hemocompatibility properties. BIOMATERIALS ADVANCES 2023; 154:213625. [PMID: 37722163 PMCID: PMC10841274 DOI: 10.1016/j.bioadv.2023.213625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death among all non-communicable diseases globally. Although expanded polytetrafluoroethylene (ePTFE) has been widely used for larger-diameter vascular graft transplantation, the persistent thrombus formation and intimal hyperplasia of small-diameter vascular grafts (SDVGs) made of ePTFE to treat severe CVDs remain the biggest challenges due to lack of biocompatibility and endothelium. In this study, bi-layered poly(acrylamide-co-2-Acrylamido-2-methyl-1-propanesulfonic acid sodium)-xanthan hydrogel-ePTFE (poly(AAm-co-NaAMPS)-xanthan hydrogel-ePTFE) vascular grafts capable of promoting endothelialization and prohibiting thrombosis were synthesized and fabricated. While the external ePTFE layer of the vascular grafts provided the mechanical stability, the inner hydrogel layer offered much-needed cytocompatibility, hemocompatibility, and endothelialization functions. The interface morphology between the inner hydrogel layer and the outer ePTFE layer was observed by scanning electron microscope (SEM), which revealed that the hydrogel was well attached to the porous ePTFE through mechanical interlocking. Among all the hydrogel compositions tested with cell culture using human umbilical vein endothelial cells (HUVECs), the hydrogel with the molar ratio of 40:60 (NaAMPS/AAm) composition (i.e., Hydrogel 40:60) exhibited the best endothelialization function, as it produced the largest endothelialization area that was three times more than of that of plain ePTFE on day 14, maintained the highest average cell viability, and had the best cell morphology. Hydrogel 40:60 also showed excellent hemocompatibility, prolonged activated partial thromboplastin time (aPTT), and good mechanical properties. Overall, bi-layered poly(AAm-co-NaAMPS)-xanthan hydrogel-ePTFE vascular grafts with the Hydrogel 40:60 composition could potentially solve the critical challenge of thrombus formation in vascular graft transplantation applications.
Collapse
Affiliation(s)
- Zhutong Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joshua Giarto
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue Zhang
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Neha Kulkarni
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Esha Mahalingam
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; College of Letters and Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Will Klipstine
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
8
|
Yang J, Wang H, Zhou Y, Duan L, Schneider KH, Zheng Z, Han F, Wang X, Li G. Silk Fibroin/Wool Keratin Composite Scaffold with Hierarchical Fibrous and Porous Structure. Macromol Biosci 2023; 23:e2300105. [PMID: 37247409 DOI: 10.1002/mabi.202300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Indexed: 05/31/2023]
Abstract
The present study describes a silk microfiber reinforced meniscus scaffold (SMRMS) with hierarchical fibrous and porous structure made from silk fibroin (SF) and wool keratin (WK) using electrospinning and freeze-drying technology. This study focuses on the morphology, secondary structure, mechanical properties, and water absorption properties of the scaffold. The cytotoxicity and biocompatibility of SMRMS are assessed in vivo and in vitro. The scaffold shows hierarchical fibrous and porous structure, hierarchical pore size distribution (ranges from 50 to 650 µm), robust mechanical properties (compression strength can reach at 2.8 MPa), and stable biodegradability. A positive growth condition revealed by in vitro cytotoxicity testing indicates that the scaffold is not hazardous to cells. In vivo assessments of biocompatibility reveal that only a mild inflammatory reaction is present in implanted rat tissue. Meniscal scaffold made of SF/WK composite shows a potential application prospect in the meniscal repair engineering field with its development.
Collapse
Affiliation(s)
- Jie Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yuhang Zhou
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Karl H Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Gurtel 18-20, Vienna, 1090, Austria
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
9
|
Li MX, Wei QQ, Mo HL, Ren Y, Zhang W, Lu HJ, Joung YK. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res 2023; 27:58. [PMID: 37291675 PMCID: PMC10251629 DOI: 10.1186/s40824-023-00399-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Hui-Lin Mo
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China.
- School of Textile and Clothing, Nantong University, Nantong, 226019, China.
| | - Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
10
|
Li Y, Jin D, Fan Y, Zhang K, Yang T, Zou C, Yin A. Preparation and performance of random- and oriented-fiber membranes with core-shell structures via coaxial electrospinning. Front Bioeng Biotechnol 2023; 10:1114034. [PMID: 36698642 PMCID: PMC9868300 DOI: 10.3389/fbioe.2022.1114034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The cells and tissue in the human body are orderly and directionally arranged, and constructing an ideal biomimetic extracellular matrix is still a major problem to be solved in tissue engineering. In the field of the bioresorbable vascular grafts, the long-term functional prognosis requires that cells first migrate and grow along the physiological arrangement direction of the vessel itself. Moreover, the graft is required to promote the formation of neointima and the development of the vessel walls while ensuring that the whole repair process does not form a thrombus. In this study, poly (l-lactide-co-ε-caprolactone) (PLCL) shell layers and polyethylene oxide (PEO) core layers with different microstructures and loaded with sodium tanshinone IIA sulfonate (STS) were prepared by coaxial electrospinning. The mechanical properties proved that the fiber membranes had good mechanical support, higher than that of the human aorta, as well as great suture retention strengths. The hydrophilicity of the oriented-fiber membranes was greatly improved compared with that of the random-fiber membranes. Furthermore, we investigated the biocompatibility and hemocompatibility of different functional fiber membranes, and the results showed that the oriented-fiber membranes containing sodium tanshinone IIA sulfonate had an excellent antiplatelet adhesion effect compared to other fiber membranes. Cytological analysis confirmed that the functional fiber membranes were non-cytotoxic and had significant cell proliferation capacities. The oriented-fiber membranes induced cell growth along the orientation direction. Degradation tests showed that the pH variation range had little change, the material mass was gradually reduced, and the fiber morphology was slowly destroyed. Thus, results indicated the degradation rate of the oriented-fiber graft likely is suitable for the process of new tissue regeneration, while the random-fiber graft with a low degradation rate may cause the material to reside in the tissue for too long, which would impede new tissue reconstitution. In summary, the oriented-functional-fiber membranes possessing core-shell structures with sodium tanshinone IIA sulfonate/polyethylene oxide loading could be used as tissue engineering materials for applications such as vascular grafts with good prospects, and their clinical application potential will be further explored in future research.
Collapse
Affiliation(s)
- Yunhuan Li
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China,Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Dalai Jin
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongyong Fan
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China,Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kuihua Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Tao Yang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Chengyu Zou
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Anlin Yin
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China,*Correspondence: Anlin Yin,
| |
Collapse
|
11
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Gorodkov AY, Tsygankov YM, Shepelev AD, Krasheninnikov SV, Zhorzholiani ST, Agafonov AV, Mamagulashvili VG, Savinov DV, Tenchurin TK, Chvalun SN. Influence of γ-Radiation on Mechanical Stability to Cyclic Loads Tubular Elastic Matrix of the Aorta. J Funct Biomater 2022; 13:192. [PMID: 36278661 PMCID: PMC9624334 DOI: 10.3390/jfb13040192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 04/13/2024] Open
Abstract
A significant drawback of the rigid synthetic vascular prostheses used in the clinic is the mechanical mismatch between the implant and the prosthetic vessel. When placing prostheses with radial elasticity, in which this deficiency is compensated, the integration of the graft occurs more favorably, so that signs of cell differentiation appear in the prosthesis capsule, which contributes to the restoration of vascular tone and the possibility of vasomotor reactions. Aortic prostheses fabricated by electrospinning from a blend of copolymers of vinylidene fluoride with hexafluoropropylene (VDF/HFP) had a biomechanical behavior comparable to the native aorta. In the present study, to ensure mechanical stability in the conditions of a living organism, the fabricated blood vessel prostheses (BVP) were cross-linked with γ-radiation. An optimal absorbed dose of 0.3 MGy was determined. The obtained samples were implanted into the infrarenal aorta of laboratory animals-Landrace pigs. Histological studies have shown that the connective capsule that forms around the prosthesis has signs of high tissue organization. This is evidenced by the cells of the fibroblast series located in layers oriented along and across the prosthesis, similar to the orientation of cells in a biological arterial vessel.
Collapse
Affiliation(s)
- Alexander Yu. Gorodkov
- A.N. Bakulev National Medical Research Center for Cardiovascular Surgery, Rublevskoye Highway 135, 121552 Moscow, Russia
| | - Yuriy M. Tsygankov
- A.N. Bakulev National Medical Research Center for Cardiovascular Surgery, Rublevskoye Highway 135, 121552 Moscow, Russia
| | - Alexey D. Shepelev
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| | - Sergey V. Krasheninnikov
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| | - Shota T. Zhorzholiani
- A.N. Bakulev National Medical Research Center for Cardiovascular Surgery, Rublevskoye Highway 135, 121552 Moscow, Russia
| | - Andrey V. Agafonov
- A.N. Bakulev National Medical Research Center for Cardiovascular Surgery, Rublevskoye Highway 135, 121552 Moscow, Russia
| | | | - Dmitriy V. Savinov
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| | - Timur Kh. Tenchurin
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| | - Sergey N. Chvalun
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| |
Collapse
|
13
|
Ozdemir S, Yalcin-Enis I, Yalcinkaya B, Yalcinkaya F. An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts. MEMBRANES 2022; 12:929. [PMID: 36295688 PMCID: PMC9607146 DOI: 10.3390/membranes12100929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Cardiovascular disease is anticipated to remain the leading cause of death globally. Due to the current problems connected with using autologous arteries for bypass surgery, researchers are developing tissue-engineered vascular grafts (TEVGs). The major goal of vascular tissue engineering is to construct prostheses that closely resemble native blood vessels in terms of morphological, mechanical, and biological features so that these scaffolds can satisfy the functional requirements of the native tissue. In this setting, morphology and cellular investigation are usually prioritized, while mechanical qualities are generally addressed superficially. However, producing grafts with good mechanical properties similar to native vessels is crucial for enhancing the clinical performance of vascular grafts, exposing physiological forces, and preventing graft failure caused by intimal hyperplasia, thrombosis, aneurysm, blood leakage, and occlusion. The scaffold's design and composition play a significant role in determining its mechanical characteristics, including suturability, compliance, tensile strength, burst pressure, and blood permeability. Electrospun prostheses offer various models that can be customized to resemble the extracellular matrix. This review aims to provide a comprehensive and comparative review of recent studies on the mechanical properties of fibrous vascular grafts, emphasizing the influence of structural parameters on mechanical behavior. Additionally, this review provides an overview of permeability and cell growth in electrospun membranes for vascular grafts. This work intends to shed light on the design parameters required to maintain the mechanical stability of vascular grafts placed in the body to produce a temporary backbone and to be biodegraded when necessary, allowing an autologous vessel to take its place.
Collapse
Affiliation(s)
- Suzan Ozdemir
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Baturalp Yalcinkaya
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Fatma Yalcinkaya
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
14
|
van Kampen KA, Fernández-Pérez J, Baker M, Mota C, Moroni L. Fabrication of a mimetic vascular graft using melt spinning with tailorable fiber parameters. BIOMATERIALS ADVANCES 2022; 139:212972. [PMID: 35882129 DOI: 10.1016/j.bioadv.2022.212972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Smooth muscle cells play a pivotal role in maintaining blood pressure and remodeling of the extracellular matrix. These cells have a characteristic spindle shape and are aligned in the radial direction to aid in the constriction of any artery. Tissue engineered grafts have the potential to recreate this alignment and offer a viable alternative to non-resorbable or autologous grafts. Specifically, with melt spinning small diameter fibers can be created that can align circumferentially on the scaffolds. In this study, a set of simplified equations were formulated to predict the final fiber parameters. Smooth muscle cell alignment was monitored on the fabricated scaffolds. Finally, a co-culture of smooth muscle cells in direct contact with endothelial cells was performed to assess the influence of the smooth muscle cell alignment on the morphology of the endothelial cells. The results show that the equations were able to accurately predict the fiber diameter, distance and angle. Primary vascular smooth muscle cells aligned according to the fiber direction mimicking the native orientation. The co-culture with endothelial cells showed that the aligned smooth muscle cells did not have an influence on the morphology of the endothelial cells. In conclusion, we formulated a series of equations that can predict the fiber parameters during melt spinning. Furthermore, the method described here can create a vascular graft with smooth muscle cells aligned circumferentially that morphologically mimics the native orientation.
Collapse
Affiliation(s)
- Kenny A van Kampen
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Julia Fernández-Pérez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Matthew Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands.
| |
Collapse
|
15
|
Zakeri Z, Salehi R, Mahkam M, Rahbarghazi R, Abbasi F, Rezaei M. Electrospun POSS integrated poly(carbonate-urea)urethane provides appropriate surface and mechanical properties for the fabrication of small-diameter vascular grafts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1415-1434. [PMID: 35380915 DOI: 10.1080/09205063.2022.2059741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study developed a platform for fabricating small-diameter vascular grafts using electrospun poly(carbonate-urea)urethane bonded with different concentrations of POSS nanocage. The characteristics of electrospun POSS-PCUUs were investigated by ATR-FTIR, 1HNMR, EDS, SEM, AFM, WCA, and DSC analyses. Besides, mechanical attributes such as tensile strength, modulus, elastic recovery, and inelastic behaviors were monitored. The survival rate and cellular attachment capacity were studied using human endothelial cells during a 7-day culture period. The results showed that electrospun nanofibers with 6 wt.% POSS-PCUU had better surface properties in terms of richness of POSS nanocage with notable improved mechanical strength and hysteresis loss properties (p < 0.05). The surface roughness of electrospun 6 wt.% POSS-PCUU reached 646 ± 10 nm with statistically significant differences compared to the control PCUU and groups containing 2, 4 wt.% POSS-PCUU (p < 0.05). The addition of 6 wt.% POSS increased the ultimate mechanical strength of nanofibers related to control PCUU and other groups (p < 0.05). The expansion of human endothelial cells on the 6 wt.% POSS-PCUU surface increased the viability reaching maximum levels on day 7 (p < 0.05). Immunofluorescence imaging using DAPI staining displayed the formation single-layer endothelial barrier at the luminal surface, indicating an appropriate cell-to-cell interaction.
Collapse
Affiliation(s)
- Ziba Zakeri
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Reza Rahbarghazi
- cStem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials, Polymer Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - Mostafa Rezaei
- Institute of Polymeric Materials, Polymer Engineering Department, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
16
|
Wang J, Wang H, Wang Y, Liu Z, Li Z, Li J, Chen Q, Meng Q, Shu WW, Wu J, Xiao C, Han F, Li B. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomater 2022; 142:85-98. [PMID: 35114373 DOI: 10.1016/j.actbio.2022.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
In bone tissue engineering, vascularization is one of the critical factors that limit the effect of biomaterials for bone repair. While various approaches have been tried to build vascular networks in bone grafts, lack of endothelialization still constitutes a major technical hurdle. In this study, we have developed a facile technique to fabricate endothelialized biomimetic microvessels (BMVs) from alginate-collagen composite hydrogels within a single step using microfluidic technology. BMVs with different sizes could be readily prepared by adjusting the flow rate of microfluids. All BMVs supported perfusion and outward penetration of substances in the tube. Endothelial cells could adhere and proliferate on the inner wall of tubes. It was also found that the expression of CD31 and secretion of BMP-2 and PDGF-BB were higher in the rat umbilical vein endothelial cells (RUVECs) in BMVs than those cultured on hydrogel. When co-cultured with bone marrow mesenchymal stem cells (BMSCs), endothelialized BMVs promoted the osteogenic differentiation of BMSCs compared to those in acellular BMV group. In vivo, markedly enhanced new bone formation was achieved by endothelialized BMVs in a rat critical-sized calvarial defect model compared to those with non-endothelialized BMVs or without BMVs. Together, findings from both in vitro and in vivo studies have proven that endothelialized BMVs function to facilitate osteogenesis and promote bone regeneration, and therefore might present an effective strategy in bone tissue engineering. STATEMENT OF SIGNIFICANCE: In bone tissue engineering, limited vascularization is one of the critical factors that limit the effect of biomaterials for bone repair. In this study, we developed a facile technique to fabricate endothelialized biomimetic microvessels (BMVs) from alginate-collagen composite hydrogels within a single step using microfluidic technology. Both in vitro and in vivo studies have proven that endothelialized BMVs function to facilitate osteogenesis and promote bone regeneration, and therefore might present an effective strategy in bone tissue engineering.
Collapse
|
17
|
Ramirez M, Vaught L, Law C, Meyer JL, Elhajjar R. Electrospinning Processing Techniques for the Manufacturing of Composite Dielectric Elastomer Fibers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6288. [PMID: 34771814 PMCID: PMC8585266 DOI: 10.3390/ma14216288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Dielectric elastomers (DE) are novel composite architectures capable of large actuation strains and the ability to be formed into a variety of actuator configurations. However, the high voltage requirement of DE actuators limits their applications for a variety of applications. Fiber actuators composed of DE fibers are particularly attractive as they can be formed into artificial muscle architectures. The interest in manufacturing micro or nanoscale DE fibers is increasing due to the possible applications in tissue engineering, filtration, drug delivery, catalysis, protective textiles, and sensors. Drawing, self-assembly, template-direct synthesis, and electrospinning processing have been explored to manufacture these fibers. Electrospinning has been proposed because of its ability to produce sub-mm diameter size fibers. In this paper, we investigate the impact of electrospinning parameters on the production of composite dielectric elastomer fibers. In an electrospinning setup, an electrostatic field is applied to a viscous polymer solution at an electrode's tip. The polymer composite with carbon black and carbon nanotubes is expelled and accelerated towards a collector. Factors that are considered in this study include polymer concentration, solution viscosity, flow rate, electric field intensity, and the distance to the collector.
Collapse
Affiliation(s)
- Mirella Ramirez
- Department of Civil & Environmental Engineering, Department of Electrical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee, WI 53211, USA; (M.R.); (C.L.)
| | - Louis Vaught
- ATSP Innovations, 6762 Shadyvilla Ln Bldg #3, Houston, TX 77055, USA; (L.V.); (J.L.M.)
| | - Chiu Law
- Department of Civil & Environmental Engineering, Department of Electrical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee, WI 53211, USA; (M.R.); (C.L.)
| | - Jacob L. Meyer
- ATSP Innovations, 6762 Shadyvilla Ln Bldg #3, Houston, TX 77055, USA; (L.V.); (J.L.M.)
| | - Rani Elhajjar
- Department of Civil & Environmental Engineering, Department of Electrical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee, WI 53211, USA; (M.R.); (C.L.)
| |
Collapse
|
18
|
Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res 2021; 510:108443. [PMID: 34597980 DOI: 10.1016/j.carres.2021.108443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has become an inevitable approach to produce nanofibrous structures for diverse environmental applications. Polysaccharides, due to their variety of types, biobased origins, and eco-friendly, and renewable nature are wonderful materials for the said purpose. The present review discusses the electrospinning process, the parameters involved in the formation of electrospun nanofibers in general, and the polysaccharides in specific. The selection of materials to be electrospun depends on the processing conditions and properties deemed desirable for specific applications. Thereby, the conditions to electrospun polysaccharides-based nanofibers have been focused on for possible environmental applications including air filtration, water treatment, antimicrobial treatment, environmental sensing, and so forth. The polysaccharide-based electrospun membranes, for instance, due to their active adsorption sites could find significant potential for contaminants removal from the aqueous systems. The study also gives some recommendations to overcome any shortcomings faced during the electrospinning and environmental applications of polysaccharide-based matrices.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - S A Munim
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Asif Ayub
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|