1
|
Cano-Plá SM, Oltolina F, Acebedo-Martínez FJ, Fernández-Penas R, Verdugo-Escamilla C, Triunfo C, Di Simone PE, Borsotti C, Follenzi A, Maoloni G, Falini G, Gómez-Morales J. Sustainable production of osteoinductive Co 2+, Mg 2+ and Mn 2+ -substituted apatites particles by one-pot conversion of biogenic calcium carbonate. Sci Rep 2025; 15:10893. [PMID: 40158005 PMCID: PMC11954947 DOI: 10.1038/s41598-025-94792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Biogenic CaCO3 microparticles obtained from oyster shells Crassostrea gigas were used as starting material for synthesizing Co2+, Mg2+ and Mn2+-doped apatite nano-submicroparticles, through a one-step hydrothermal conversion. The conversion was completed at 200 °C for 7 days, yielding metal-doped apatite and whitlockite in percentages of 5.3 wt% when adding Co2+, 28.7 wt% for Mg2+, and 0 wt% for Mn2+. Samples were cytocompatible with murine pancreatic endothelial cells (MS1), murine mesenchymal stem cells (m17.ASC), and murine osteoblast's progenitors (mOBPs) cells. The analysis by flow cytometry and TEM-EDX revealed strong particle-cell interactions, sustained internalization across m17.ASC and mOBPs cells, and potential progressive apatite dissolution in the cellular environment. Additionally, incubating these cells with the metal-doped samples promoted their osteogenic differentiation without needing an osteogenic differentiation medium. Indeed, the evaluation of gene expression by quantitative real-time PCR, the detection of alkaline phosphatase activity, and the ability to induce the mineralization in the cellular matrix analyzed by alizarin red staining revealed that all particles (and particularly the carbonated apatite and the Mg-doped sample) encouraged the osteogenic commitment. This approach represents a sustainable way to valorize and transform aquaculture and canning industries' mineral waste (shells) in highly demanded osteoinductive materials.
Collapse
Affiliation(s)
- Sandra María Cano-Plá
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Francisco Javier Acebedo-Martínez
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Raquel Fernández-Penas
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Cristóbal Verdugo-Escamilla
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Carla Triunfo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Paolo Emanuele Di Simone
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Chiara Borsotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy.
| | - Gabriele Maoloni
- Plant Ascoli Piceno, Finproject S.p.A., 3100, Ascoli Piceno, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Jaime Gómez-Morales
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain.
| |
Collapse
|
2
|
Silingardi F, Salamanna F, Español M, Maglio M, Sartori M, Giavaresi G, Bigi A, Ginebra MP, Boanini E. Regulation of osteogenesis and angiogenesis by cobalt, manganese and strontium doped apatitic materials for functional bone tissue regeneration. BIOMATERIALS ADVANCES 2024; 163:213968. [PMID: 39059113 DOI: 10.1016/j.bioadv.2024.213968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Strontium, cobalt, and manganese ions are present in the composition of bone and useful for bone metabolism, even when combined with calcium phosphate in the composition of biomaterials. Herein we explored the possibility to include these ions in the composition of apatitic materials prepared through the cementitious reaction between ion-substituted calcium phosphate dibasic dihydrate, CaHPO4·2H2O (DCPD) and tetracalcium phosphate, Ca4(PO4)2O (TTCP). The results of the chemical, structural, morphological and mechanical characterization indicate that cobalt and manganese exhibit a greater delaying effect than strontium (about 15 at.%) on the cementitious reaction, even though they are present in smaller amounts within the materials (about 0.8 and 4.5 at.%, respectively). Furthermore, the presence of the foreign ions in the apatitic materials leads to a slight reduction of porosity and to enhancement of compressive strength. The results of biological tests show that the presence of strontium and manganese, as well as calcium, in the apatitic materials cultured in direct contact with human mesenchymal stem cells (hMSCs) stimulates their viability and activity. In contrast, the apatitic material containing cobalt exhibits a lower metabolic activity. All the materials have a positive effect on the expression of Vascular Endothelial Growth Factor (VEGF) and Von Willebrand Factor (vWF). Moreover, the apatitic material containing strontium induces the most significant reduction in the differentiation of preosteoclasts into osteoclasts, demonstrating not only osteogenic and angiogenic properties, but also ability to regulate bone resorption.
Collapse
Affiliation(s)
- Francesca Silingardi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Montserrat Español
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08019, Spain
| | - Melania Maglio
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08019, Spain
| | - Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
3
|
Shokri M, Kharaziha M, Ahmadi Tafti H, Dalili F, Mehdinavaz Aghdam R, Ghiassi SR, Baghaban Eslaminejad M. Melatonin-loaded mesoporous zinc- and gallium-doped hydroxyapatite nanoparticles to control infection and bone repair. Biomater Sci 2024; 12:4194-4210. [PMID: 38980095 DOI: 10.1039/d4bm00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Effective treatment of infected bone defects resulting from multi-drug resistant bacteria (MDR) has emerged as a significant clinical challenge, highlighting the pressing demand for potent antibacterial bone graft substitutes. Mesoporous nanoparticles have been introduced as a promising class of biomaterials offering significant properties for treating bone infections. Herein, we synthesize antibacterial mesoporous hydroxyapatite substituted with zinc and gallium (Zn-Ga:mHA) nanoparticles using a facile sol-gel method. The resulting mesoporous nanoparticles are applied for the controlled release of melatonin (Mel). Zn-Ga:mHA nanoparticles with an average particle size of 36 ± 3 nm and pore size of 10.6 ± 0.4 nm reveal a Mel loading efficiency of 58 ± 1%. Results show that 50% of Mel is released within 20 h and its long-term release is recorded up to 50 h. The Zn-Ga:mHA nanoparticles exhibit highly effective antibacterial performance as reflected by a 19 ± 1% and 8 ± 2% viability reduction in Escherichia coli and Staphylococcus bacteria, respectively. Noticeably, Mel-loaded Zn-Ga:mHA nanoparticles are also cytocompatible and stimulate in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) without any osteoinductive factor. In vivo studies in a rabbit skull also show significant regeneration of bone during 14 days. In summary, Mel-loaded Zn-Ga:mHA nanoparticles provide great potential as an antibacterial and osteogenic component in bone substitutes like hydrogels, scaffolds, and coatings.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Ahmadi Tafti
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Seyed Reza Ghiassi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Bauer L, Antunović M, Ivanković H, Ivanković M. Biomimetic Scaffolds Based on Mn 2+-, Mg 2+-, and Sr 2+-Substituted Calcium Phosphates Derived from Natural Sources and Polycaprolactone. Biomimetics (Basel) 2024; 9:30. [PMID: 38248604 PMCID: PMC10813741 DOI: 10.3390/biomimetics9010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The occurrence of bone disorders is steadily increasing worldwide. Bone tissue engineering (BTE) has emerged as a promising alternative to conventional treatments of bone defects, developing bone scaffolds capable of promoting bone regeneration. In this research, biomimetic scaffolds based on ion-substituted calcium phosphates, derived from cuttlefish bone, were prepared using a hydrothermal method. To synthesize Mn2+-substituted scaffolds, three different manganese concentrations (corresponding to 1, 2.5, and 5 mol% Mn substitutions for Ca into hydroxyapatite) were used. Also, syntheses with the simultaneous addition of an equimolar amount (1 mol%) of two (Mg2+ and Sr2+) or three ions (Mn2+, Mg2+, and Sr2+) were performed. A chemical, structural, and morphological characterization was carried out using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The effects of the ion substitutions on the lattice parameters, crystallite sizes, and fractions of the detected phases were discussed. Multi-substituted (Mn2+, Mg2+, and Sr2+) scaffolds were coated with polycaprolactone (PCL) using simple vacuum impregnation. The differentiation of human mesenchymal stem cells (hMSCs), cultured on the PCL-coated scaffold, was evaluated using histology, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction analyses. The expression of collagen I, alkaline phosphatase, and dentin matrix protein 1 was detected. The influence of PCL coating on hMSCs behavior is discussed.
Collapse
Affiliation(s)
| | | | | | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10001 Zagreb, Croatia; (L.B.); (M.A.); (H.I.)
| |
Collapse
|
5
|
Abdallah YK, Estévez AT. Biowelding 3D-Printed Biodigital Brick of Seashell-Based Biocomposite by Pleurotus ostreatus Mycelium. Biomimetics (Basel) 2023; 8:504. [PMID: 37887635 PMCID: PMC10604342 DOI: 10.3390/biomimetics8060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Mycelium biocomposites are eco-friendly, cheap, easy to produce, and have competitive mechanical properties. However, their integration in the built environment as durable and long-lasting materials is not solved yet. Similarly, biocomposites from recycled food waste such as seashells have been gaining increasing interest recently, thanks to their sustainable impact and richness in calcium carbonate and chitin. The current study tests the mycelium binding effect to bioweld a seashell biocomposite 3D-printed brick. The novelty of this study is the combination of mycelium and a non-agro-based substrate, which is seashells. As well as testing the binding capacity of mycelium in welding the lattice curvilinear form of the V3 linear Brick model (V3-LBM). Thus, the V3-LBM is 3D printed in three separate profiles, each composed of five layers of 1 mm/layer thickness, using seashell biocomposite by paste extrusion and testing it for biowelding with Pleurotus ostreatus mycelium to offer a sustainable, ecofriendly, biomineralized brick. The biowelding process investigated the penetration and binding capacity of the mycelium between every two 3D-printed profiles. A cellulose-based culture medium was used to catalyse the mycelium growth. The mycelium biowelding capacity was investigated by SEM microscopy and EDX chemical analysis of three samples from the side corner (S), middle (M), and lateral (L) zones of the biowelded brick. The results revealed that the best biowelding effect was recorded at the corner and lateral zones of the brick. The SEM images exhibited the penetration and the bridging effect achieved by the dense mycelium. The EDX revealed the high concentrations of carbon, oxygen, and calcium at all the analyzed points on the SEM images from all three samples. An inverted relationship between carbon and oxygen as well as sodium and potassium concentrations were also detected, implying the active metabolic interaction between the fungal hyphae and the seashell-based biocomposite. Finally, the results of the SEM-EDX analysis were applied to design favorable tessellation and staking methods for the V3-LBM from the seashell-mycelium composite to deliver enhanced biowelding effect along the Z axis and the XY axis with <1 mm tessellation and staking tolerance.
Collapse
Affiliation(s)
- Yomna K. Abdallah
- iBAG-UIC Barcelona, Institute for Biodigital Architecture & Genetics, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Alberto T. Estévez
- iBAG-UIC Barcelona, Institute for Biodigital Architecture & Genetics, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| |
Collapse
|
6
|
Karunakaran G, Cho EB, Kumar GS, Kolesnikov E, Govindaraj SK, Mariyappan K, Boobalan S. CTAB enabled microwave-hydrothermal assisted mesoporous Zn-doped hydroxyapatite nanorods synthesis using bio-waste Nodipecten nodosus scallop for biomedical implant applications. ENVIRONMENTAL RESEARCH 2023; 216:114683. [PMID: 36341797 DOI: 10.1016/j.envres.2022.114683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In biomedical exploration, the predominant characteristic is synthesizing and fabricating multifunctional nanostructure with intensified biocompatibility and excellent antibacterial applications to avoid post-surgical implant failure. The objective of the current study is to examine ideal mesoporous zinc-doped hydroxyapatite (HAp) for future use in the field of biomedical research. In the present investigation, we synthesized mesoporous Zn-doped HAp nanorods with varied mole concentrations using a profound microwave hydrothermal method utilizing bio-waste Nodipecten nodosus scallop as a calcium source and CTAB as an organic modifier. Bio-waste Nodipecten nodosus scallop is a widely available cheap calcium precursor which is converted into pure and zinc-doped hydroxyapatite nanorods with the help of the microwave hydrothermal method. Different analytical techniques like spectroscopy and electron microscopy were employed to evaluate and precisely characterize the structural and morphological characteristics in synthesized pure and mesoporous Zn-doped HAp nanorods. CTAB and microwave hydrothermal methods successfully create mesoporous Zn-doped hydroxyapatite nanorods with different sizes and morphology. Mesoporous Zinc-doped HAp nanorods show excellent antibacterial activity against Klebsiella pneumoniae (MTCC 7407) and Bacillus subtilis (MTCC 1133), compared to other nanorods. ZnHAp-3 shows notable excellent results of antibacterial effect towards K. pneumoniae and B. subtilis, by exhibiting 12.36 ± 0.12 and 13.12 ± 0.16 mm zone of inhibition. Furthermore, ZnHAp-1 shows the lower zone of inhibition, while the ZnHAp-3 sample shows the highest zone of inhibition. A foremost study performed was toxicity assays to validate safe attributes of mesoporous zinc-doped HAp intensified with the proliferation function of the zebrafish model. The results reveal the non-toxic behavior of pure and mesoporous zinc-doped HAp samples. Thus, our studies provide evidence for the synthesis technique for the mesoporous zinc-doped HAp nanorods using a novel CTAB-enabled microwave hydrothermal method utilizing bio-waste Nodipecten nodosus scallop as a calcium source will be alternative affordable biocidal antibacterial materials for controlling post-surgical implant failures.
Collapse
Affiliation(s)
- Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoultech), Gongneung-ro 232, Nowon-gu, Seoul, 01811, Republic of Korea.
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoultech), Gongneung-ro 232, Nowon-gu, Seoul, 01811, Republic of Korea.
| | - Govindan Suresh Kumar
- Department of Physics, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - Evgeny Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology "MISiS", Leninskiy Pr. 4, Moscow, 119049, Russia
| | - Sudha Kattakgoundar Govindaraj
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - Kowsalya Mariyappan
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - Selvakumar Boobalan
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| |
Collapse
|
7
|
Injorhor P, Trongsatitkul T, Wittayakun J, Ruksakulpiwat C, Ruksakulpiwat Y. Nano-Hydroxyapatite from White Seabass Scales as a Bio-Filler in Polylactic Acid Biocomposite: Preparation and Characterization. Polymers (Basel) 2022; 14:polym14194158. [PMID: 36236110 PMCID: PMC9571318 DOI: 10.3390/polym14194158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Nano-hydroxyapatite (nHAp) as a bio-filler used in PLA composites was prepared from fish by acid deproteinization (1DP) and a combination of acid-alkali deproteinization (2DP) followed by alkali heat treatment. Moreover, the PLA/nHAp composite films were developed using solution casting method. The mechanical and thermal properties of the PLA composite films with nHAp from different steps deproteinization and contents were compared. The physical properties analysis confirmed that the nHAp can be prepared from fish scales using both steps deproteinization. 1DP-nHAp showed higher surface area and lower crystallinity than 2DP-nHAp. This gave advantage of 1DP-nHAp for use as filler. PLA composite with 1DP-nHAp gave tensile strength of 66.41 ± 3.63 MPa and Young’s modulus of 2.65 ± 0.05 GPa which were higher than 2DP-nHAp at the same content. The addition of 5 phr 1DP-nHAp into PLA significantly improved the tensile strength and Young’s modulus. PLA composite solution with 1DP-nHAp at 5 phr showed electrospinnability by giving continuous fibers without beads.
Collapse
Affiliation(s)
- Preeyaporn Injorhor
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Tatiya Trongsatitkul
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Jatuporn Wittayakun
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| |
Collapse
|
8
|
Karunakaran G, Cho EB, Kumar GS, Kolesnikov E, Sudha KG, Mariyappan K, Han A, Choi SS. Citric Acid-Mediated Microwave-Hydrothermal Synthesis of Mesoporous F-Doped HAp Nanorods from Bio-Waste for Biocidal Implant Applications. NANOMATERIALS 2022; 12:nano12030315. [PMID: 35159660 PMCID: PMC8840346 DOI: 10.3390/nano12030315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 12/19/2022]
Abstract
In this current research, mesoporous nano-hydroxyapatite (HAp) and F-doped hydroxyapatite (FHAp) were effectively obtained through a citric acid-enabled microwave hydrothermal approach. Citric acid was used as a chelating and modifying agent for tuning the structure and porosity of the HAp structure. This is the first report to use citric acid as a modifier for producing mesoporous nano HAp and F-doped FHAp. The obtained samples were characterized by different analyses. The XRD data revealed that F is incorporated well into the HAp crystal structure. The crystallinity of HAp samples was improved and the unit cell volume was lowered with fluorine incorporation. Transmission electron microscopy (TEM) images of the obtained samples revealed that a nano rod-like shape was obtained. The mesoporous structures of the produced HAp samples were confirmed by Brunauer–Emmett–Teller (BET) analysis. In vivo studies performed using zebrafish and C. elegans prove the non-toxic behavior of the synthesized F doped HAp samples. The obtained samples are also analyzed for antimicrobial activity using Gram-negative and Gram-positive bacteria, which are majorly involved in implant failure. The F doped samples revealed excellent bactericidal activity. Hence, this study confirms that the non-toxic and excellent antibacterial mesoporous F doped HAp can be a useful candidate for biocidal implant application.
Collapse
Affiliation(s)
- Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea
- Correspondence: (G.K.); (E.-B.C.)
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea
- Correspondence: (G.K.); (E.-B.C.)
| | - Govindan Suresh Kumar
- Department of Physics, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India;
| | - Evgeny Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISiS”, Leninskiy Pr. 4, Moscow 119049, Russia;
| | - Kattakgoundar Govindaraj Sudha
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India; (K.G.S.); (K.M.)
| | - Kowsalya Mariyappan
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India; (K.G.S.); (K.M.)
| | - Areum Han
- Department of Food and Nutrition, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin 17058, Korea; (A.H.); (S.S.C.)
| | - Shin Sik Choi
- Department of Food and Nutrition, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin 17058, Korea; (A.H.); (S.S.C.)
- Department of Energy Science and Technology, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin 17058, Korea
| |
Collapse
|