1
|
Singh RK, Verma K, Kumar GCM, Jalageri MB. Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:191-211. [PMID: 39190630 DOI: 10.1080/09205063.2024.2396224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Khyati Verma
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - G C Mohan Kumar
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Mallikarjun B Jalageri
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| |
Collapse
|
2
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
3
|
Luobin L, Wanxin H, Yingxin G, Qinzhou Z, Zefeng L, Danyang W, Huaqin L. Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives. Cell Death Discov 2024; 10:386. [PMID: 39209834 PMCID: PMC11362291 DOI: 10.1038/s41420-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance to conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.
Collapse
Affiliation(s)
- Lin Luobin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - He Wanxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Guo Yingxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Zheng Qinzhou
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liang Zefeng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wu Danyang
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Li Huaqin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
4
|
Hu P, Xu J, Li Q, Sha J, Zhou H, Wang X, Xing Y, Wang Y, Gao K, Xu K, Zheng S. Tumor microenvironment-activated theranostic nanozymes for trimodal imaging-guided combined therapy. J Colloid Interface Sci 2024; 660:585-596. [PMID: 38266340 DOI: 10.1016/j.jcis.2024.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Synergistic therapy is expected to be a promising strategy for highly effective cancer treatment. However, the rational design of a simple and multifunctional nanoplatform still remains a grand challenge. Considering the nature of weak acidic, hypoxic, and H2O2 abundant tumor microenvironment, we constructed an indocyanine green (ICG) modified platinum nanoclusters (Pt NCs) decorated gold nanobipyramids (Au NBPs) to form the multifunctional nanocomposites (Au NBPs@Pt NCs-ICG) for multimodal imaging mediated phototherapy and chemodynamic cancer therapy. The photosensitizer ICG was covalently linked to Au NBPs@Pt NCs by bridging molecules of SH-PEG-NH2 for both photodynamic therapy (PDT) and fluorescence imaging. Besides, Au NBPs@Pt NCs-ICG nanocomposites exhibited catalase- and peroxidase-like activities to generate O2 and ·OH, which relieved the tumor hypoxia and upregulated antitumoral ROS level. Moreover, the combination of Au NBPs and ICG endowed the Au NBPs@Pt NCs-ICG with super photothermal conversion for effective photothermal imaging and therapy. In addition, the Au NBPs@Pt NCs-ICG nanoplatform displayed excellent X-ray computed tomography (CT) imaging ability due to the presence of high-Z elements (Au and Pt). Overall, our results demonstrated that Au NBPs@Pt NCs-ICG nanoplatform exhibited a multimodal imaging guided synergistic PTT/PDT/CDT therapeutic manners and held great potential as an efficient treatment for breast cancer.
Collapse
Affiliation(s)
- Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Jie Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qiushi Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jingyun Sha
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hong Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xuemeng Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yujuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kai Gao
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272002, China.
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
5
|
Tang S, Li R, Luo T, Huang T, Lu X, Wu X, Dong Y, Wu C, Xu K, Wang Y. Preparation of Gd-doped AuNBP@mSiO 2 nanocomposites for the MR imaging, drug delivery and chemo-photothermal synergistic killing of breast cancer cells. RSC Adv 2023; 13:23976-23983. [PMID: 37577100 PMCID: PMC10413050 DOI: 10.1039/d3ra03753c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
Under near-infrared (NIR) light, gold nanobipyramids (AuNBPs) exhibit a high photothermal conversion rate and photothermal stability, making them ideal mediators for photothermal therapy (PTT). In this study, highly purified AuNBPs are prepared, followed by coating their surfaces with mesoporous silica (mSiO2). The obtained AuNBP@mSiO2 nanocomplex exhibits an ellipsoidal shape with a relatively large specific surface, pore diameter and pore volume. To achieve MRI guided chemo-photothermal therapy of breast cancer cells, the nanocomplex is further coupled with the MRI contrast agent Gd-DTTA and the chemotherapeutic drug doxorubicin (DOX). The results indicated that under NIR light irradiation, AuNBPs exhibited promising PTT effects, while the cumulative release rate of DOX was significantly enhanced to 81.40%. Moreover, the chemo-photothermal therapy approach effectively eradicated 4T1 breast cancer cells. This work successfully confirms that chemo-photothermal synergistic therapy is an effective tumor treatment strategy and demonstrates the potential application of AuNBP@mSiO2 as a nano-drug delivery platform. Additionally, it introduces new ideas for the integrated study of breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shiyi Tang
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Ruohan Li
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu 221002 China
| | - Tao Luo
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Tianhao Huang
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Xiaotong Lu
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Xinyao Wu
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Yulin Dong
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu 221002 China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University Xuzhou Jiangsu 221004 China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu 221002 China
| |
Collapse
|
6
|
Duraiyarasu M, Kumaran SS, Mayilmurugan R. Alkyl Chain Appended Fe(III) Catecholate Complex as a Dual-Modal T1 MRI-NIR Fluorescence Imaging Agent via Second Sphere Water Interactions. ACS Biomater Sci Eng 2023. [PMID: 37141045 DOI: 10.1021/acsbiomaterials.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The C12-alkyl chain-conjugated Fe(III) catecholate complex [Fe(C12CAT)3]3-, Fe(C12CAT)3 [C12CAT = N-(3,4-dihydroxyphenethyl)dodecanamide], was synthesized and characterized, reported as a dual-modal T1-MRI and an optical imaging probe. The DFT-optimized structure of Fe(C12CAT)3 reveals a distorted octahedral coordination geometry around the high spin Fe(III) center. The formation constant (-log K) of Fe(C12CAT)3 was calculated as 45.4. The complex exhibited r1-relaxivity values of 2.31 ± 0.12 and 1.52 ± 0.06 mM-1 s-1 at 25 and 37 °C, respectively, on 1.41 T at pH 7.3 via second-sphere water interactions. The interaction of Fe(C12CAT)3 with human serum albumin showed concomitant enhancement of r1-relaxivity to 6.44 ± 0.15 mM-1 s-1. The MR phantom images are significantly brighter and directly correlate to the concentration of Fe(C12CAT)3. Adding an external fluorescent marker IR780 dye to Fe(C12CAT)3 leads to the formation of self-assembly by C12-alkyl chains. It resulted in the fluorescence quenching of the dye, and its critical aggregation concentration was calculated as 70 μM. The aggregated matrix of Fe(C12CAT)3 and IR780 dye is spherical, with an average hydrodynamic diameter of 189.5 nm. This self-assembled supramolecular system is found to be non-fluorescent and was "turn-on" under acidic pH via dissociation of aggregates. The r1-relaxivity is found to be unchanged during the matrix aggregation and disaggregation. The probe showed MRI ON and fluorescent OFF under physiological conditions and MRI ON and fluorescent ON under acidic pH. The cell viability experiments showed that the cells are 80% viable at 1 mM probe concentration. Fluorescence experiments and MR phantom images showed that Fe(C12CAT)3 is a potential dual model imaging probe to visualize the acidic pH environment of the cells.
Collapse
Affiliation(s)
- Maheshwaran Duraiyarasu
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| |
Collapse
|
7
|
An Efficient, Short Stimulus PANC-1 Cancer Cell Ablation and Electrothermal Therapy Driven by Hydrophobic Interactions. Pharmaceutics 2022; 15:pharmaceutics15010106. [PMID: 36678734 PMCID: PMC9867450 DOI: 10.3390/pharmaceutics15010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Promising results in clinical studies have been demonstrated by the utilization of electrothermal agents (ETAs) in cancer therapy. However, a difficulty arises from the balance between facilitating the degradation of ETAs, and at the same time, increasing the electrothermal performance/stability required for highly efficient treatment. In this study, we controlled the thermal signature of the MoS2 by harnessing MoS2 nanostructures with M13 phage (MNM) via the structural assembling (hydrophobic interaction) phenomena and developed a combined PANC-1 cancer cell-MNM alternating current (AC)-stimulus framework for cancer cell ablation and electrothermal therapy. A percentage decrease in the cell viability of ~23% was achieved, as well as a degradation time of 2 weeks; a stimulus length of 100 μs was also achieved. Molecular dynamics (MD) simulations revealed the assembling kinetics in integrated M13 phage-cancer cell protein systems and the structural origin of the hydrophobic interaction-enabled increase in thermal conduction. This study not only introduced an 'ideal' agent that avoided the limitations of ETAs but also provided a proof-of-concept application of MoS2-based materials in efficacious cancer therapy.
Collapse
|
8
|
Technetium-99m radiolabeled nucleolin-targeted aptamer for glioma tumor imaging in murine models. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|