1
|
Xiao D, Mi X, Wang Q, Chen S, Chen R, Zhao Y, Liu Y, Wei D. Advancements in manufacturing technologies in the small-diameter artificial blood vessels field. Biomed Mater 2025; 20:032005. [PMID: 40199337 DOI: 10.1088/1748-605x/adca7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Cardiovascular diseases (CVD) can cause narrowing or blockage in small diameter blood vessels (less than 6 millimeters in diameter). Bypass surgery, which involves replacing damaged native blood vessels, can address various CVD. Recent advancements in manufacturing techniques and the application of new materials have led to the creation of artificial blood vessels that more closely resemble native vessels. By combining different materials and manufacturing methods, it is possible to mimic the structure and function of native blood vessels. Surface coating technologies are also employed in the production of artificial blood vessels to replicate certain vascular functions, such as regulating thrombosis and dissolution. Although most products are not yet ready for clinical use, research and development in artificial blood vessels are progressing faster than ever before (figure1).
Collapse
Affiliation(s)
- Di Xiao
- Department of Cardiovascular Medicine, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xuelian Mi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiao Tong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, People's Republic of China
| | - Shaojun Chen
- Department of Cardiovascular Medicine, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rongtao Chen
- Department of Cardiovascular Medicine, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yongjie Zhao
- School of Clinical Medicine, Jining Medical University, 272013 Jining, Shandong, People's Republic of China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Dongmei Wei
- Department of Cardiovascular Medicine, Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
- Liuzhou Traditional Chinese Medical Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou 545001, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
2
|
Sun H, Gong Q, Fan Y, Wang Y, Wang J, Zhu C, Mou H, Yang S, Liu J. Unlocking 3D printing technology for microalgal production and application. ADVANCED BIOTECHNOLOGY 2024; 2:36. [PMID: 39883345 PMCID: PMC11740839 DOI: 10.1007/s44307-024-00044-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns. This work aims to provide a comprehensive overview of recent advancements in 3D-printed bioreactors for microalgal production, focusing on 3D printing techniques, bio-ink types, and their applications across environmental, food, and medical fields. This review highlights the benefits of 3D-printed bioreactors, including improved mass transfer, optimized light exposure, enhanced biomass yield, and augmented photosynthesis. Current challenges and future directions of 3D printing in microalgal production are also discussed to offer new insights into boosting microalgal cultivation efficiency for expanded applications.
Collapse
Affiliation(s)
- Han Sun
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Qian Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yuwei Fan
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
You C, Zhang Z, Guo Y, Liu S, Hu K, Zhan Y, Aihemaiti S, Tao S, Chu Y, Fan L. Application of extracellular matrix cross-linked by microbial transglutaminase to promote wound healing. Int J Biol Macromol 2024; 266:131384. [PMID: 38580012 DOI: 10.1016/j.ijbiomac.2024.131384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
One primary focus of skin tissue engineering has been the creation of innovative biomaterials to facilitate rapid wound healing. Extracellular matrix (ECM), an essential biofunctional substance, has recently been discovered to play a crucial role in wound healing. Consequently, we endeavored to decellularize ECM from pig achilles tendon and refine its mechanical and biological properties through modification by utilizing cross-linking agents. Glutaraldehyde (GA), 1-ethyl-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), double aldol starch (DAS), and microbial transglutaminase (MTG) were utilized to produce crosslinked ECM variants (GA-ECM, EDC/NHS-ECM, DAS-ECM, and MTG-ECM). Comprehensive assessments were conducted to evaluate the physical properties, biocompatibility, and wound healing efficacy of each material. The results indicated that MTG-ECM exhibited superior tensile strength, excellent hydrophilicity, minimal cytotoxicity, and the best pro-healing impact among the four modified scaffolds. Staining analysis of tissue sections further revealed that MTG-ECM impeded the transition from type III collagen to type I collagen in the wound area, potentially reducing the development of wound scar. Therefore, MTG-ECM is expected to be a potential pro-skin repair scaffold material to prevent scar formation.
Collapse
Affiliation(s)
- Chenkai You
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Zhihan Zhang
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Yuandong Guo
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Shuang Liu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Kangdi Hu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China
| | - Yuhang Zhan
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Shami Aihemaiti
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China
| | - Shengxiang Tao
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, PR China.
| | - Yingying Chu
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China.
| | - Lihong Fan
- School of Chemistry, Chemical Engineering, and Life Sciences, Wuhan University of Technology, 430070, PR China.
| |
Collapse
|
4
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Zhou Y, Yue T, Ding Y, Tan H, Weng J, Luo S, Zheng X. Nanotechnology translation in vascular diseases: From design to the bench. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1919. [PMID: 37548140 DOI: 10.1002/wnan.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Kim SJ, Kim MG, Kim J, Jeon JS, Park J, Yi HG. Bioprinting Methods for Fabricating In Vitro Tubular Blood Vessel Models. CYBORG AND BIONIC SYSTEMS 2023; 4:0043. [PMID: 37533545 PMCID: PMC10393580 DOI: 10.34133/cbsystems.0043] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Dysfunctional blood vessels are implicated in various diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Several studies have attempted to prevent and treat vascular diseases and understand interactions between these diseases and blood vessels across different organs and tissues. Initial studies were conducted using 2-dimensional (2D) in vitro and animal models. However, these models have difficulties in mimicking the 3D microenvironment in human, simulating kinetics related to cell activities, and replicating human pathophysiology; in addition, 3D models involve remarkably high costs. Thus, in vitro bioengineered models (BMs) have recently gained attention. BMs created through biofabrication based on tissue engineering and regenerative medicine are breakthrough models that can overcome limitations of 2D and animal models. They can also simulate the natural microenvironment in a patient- and target-specific manner. In this review, we will introduce 3D bioprinting methods for fabricating bioengineered blood vessel models, which can serve as the basis for treating and preventing various vascular diseases. Additionally, we will describe possible advancements from tubular to vascular models. Last, we will discuss specific applications, limitations, and future perspectives of fabricated BMs.
Collapse
Affiliation(s)
- Seon-Jin Kim
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Min-Gyun Kim
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jinsoo Park
- Department of Mechanical Engineering, Chonnam National University, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232214158. [PMID: 36430637 PMCID: PMC9698198 DOI: 10.3390/ijms232214158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.
Collapse
|
9
|
Liu G, Chen J, Wang X, Liu Y, Ma Y, Tu X. Functionalized 3D-Printed ST2/Gelatin Methacryloyl/Polcaprolactone Scaffolds for Enhancing Bone Regeneration with Vascularization. Int J Mol Sci 2022; 23:ijms23158347. [PMID: 35955478 PMCID: PMC9368581 DOI: 10.3390/ijms23158347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Growth factors were often used to improve the bioactivity of biomaterials in order to fabricate biofunctionalized bone grafts for bone defect repair. However, supraphysiological concentrations of growth factors for improving bioactivity could lead to serious side effects, such as ectopic bone formation, radiculitis, swelling of soft tissue in the neck, etc. Therefore, safely and effectively applying growth factors in bone repair biomaterials comes to be an urgent problem that needs to be addressed. In this study, an appropriate concentration (50 ng/mL) of Wnt3a was used to pretreat the 3D-bioprinting gelatin methacryloyl(GelMA)/polycaprolactone(PCL) scaffold loaded with bone marrow stromal cell line ST2 for 24 h. This pretreatment promoted the cell proliferation, osteogenic differentiation, and mineralization of ST2 in the scaffold in vitro, and enhanced angiogenesis and osteogenesis after being implanted in critical-sized mouse calvarial defects. On the contrary, the inhibition of Wnt/β-catenin signaling in ST2 cells reduced the bone repair effect of this scaffold. These results suggested that ST2/GelMA/PCL scaffolds pretreated with an appropriate concentration of Wnt3a in culture medium could effectively enhance the osteogenic and angiogenic activity of bone repair biomaterials both in vitro and in vivo. Moreover, it would avoid the side effects caused by the supraphysiological concentrations of growth factors. This functionalized scaffold with osteogenic and angiogenic activity might be used as an outstanding bone substitute for bone regeneration and repair.
Collapse
|
10
|
Zhang L, Dong H, Yu Y, Liu L, Zang P. Application and challenges of
3D
food printing technology in manned spaceflight: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Long‐zhen Zhang
- Space Science and Technology Institute (Shenzhen) Shenzhen 518117 China
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| | - Hai‐sheng Dong
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| | - Yan‐bo Yu
- Space Science and Technology Institute (Shenzhen) Shenzhen 518117 China
| | - Li‐yan Liu
- Lee Kum Kee (Xinhui) Food Co., Ltd. Jiangmen Guangdong 529156 China
| | - Peng Zang
- China Astronaut Research and Training Center Key Laboratory of Space Nutrition and Food Engineering Beijing 100094 China
| |
Collapse
|
11
|
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. MICROMACHINES 2022; 13:642. [PMID: 35457946 PMCID: PMC9033068 DOI: 10.3390/mi13040642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| | - Yanhua Song
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| |
Collapse
|