1
|
Pineda-Hernandez A, Castilla-Casadiego DA, Morton LD, Giordano-Nguyen SA, Halwachs KN, Rosales AM. Tunable hydrogel networks by varying secondary structures of hydrophilic peptoids provide viable 3D cell culture platforms for hMSCs. Biomater Sci 2025. [PMID: 40354141 PMCID: PMC12068446 DOI: 10.1039/d5bm00433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Hydrogels have excellent ability to mimic the extracellular matrix (ECM) during 3D cell culture, yet it remains difficult to tune their mechanical properties without also changing network connectivity. Previously, we developed 2D culture platforms based on tunable hydrogels crosslinked by peptoids with various secondary structures: helical, non-helical, and unstructured, which allowed control over hydrogel mechanics independent of network connectivity. Here, we extend our strategy to 3D matrices by modifying the peptoids with piperazine and homopiperazine residues to enhance water solubility without altering their secondary structure. Hydrogels crosslinked with helical peptoids exhibited significantly higher stiffness compared to hydrogels crosslinked with non-helical or unstructured peptoids. Human mesenchymal stem cells (hMSCs) encapsulated within these hydrogels were assessed for viability, proliferation, and immunomodulatory potential. The stiffest hydrogels promoted the highest rates of proliferation and increased yes-associated protein (YAP) nuclear localization. Softer hydrogels, however, showed enhanced production of indoleamine 2,3-dioxygenase (IDO), both with and without interferon gamma (IFN-γ) stimulation, highlighting their potential in immunomodulatory applications. The biomimetic platform developed here enables the study of how matrix mechanics influence stem cell behavior without confounding factors from network connectivity, leading to insights for hMSC-mediated immunomodulation.
Collapse
Affiliation(s)
- Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | - Logan D Morton
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | - Kathleen N Halwachs
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Cifuentes SJ, Theran-Suarez NA, Rivera-Crespo C, Velez-Roman L, Thacker B, Glass C, Domenech M. Heparan Sulfate-Collagen Surface Multilayers Support Serum-Free Microcarrier Culture of Mesenchymal Stem Cells. ACS Biomater Sci Eng 2024; 10:5739-5751. [PMID: 39187752 DOI: 10.1021/acsbiomaterials.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing cost of high-volume cultures and dependence on serum and growth factor supplementation limit the affordability of mesenchymal stromal cell (MSC) therapies. This has spurred interest in developing strategies that support adherent cell expansion while reducing raw material costs. Culture surfaces coated with sulfated glycosaminoglycans (GAGs), specifically heparan sulfate (HS), are an alternative to prolong growth factor retention in cell cultures. Unlike heparin, recombinant HS (rHS) offers strong binding affinity for multiple growth factors and extracellular matrix components, such as collagen I, without undesirable anticoagulant effects or xenobiotic health risks. The potential of rHS as a factor reservoir in MSC cultures remains underexplored. This study investigated the impact of rHS on the growth and anti-inflammatory properties of undifferentiated bone marrow MSCs in both planar and microcarrier-based cultures. It was hypothesized that rHS would enable MSC growth with minimal growth factor supplementation in a sulfation level-dependent manner. Cell culture surfaces were assembled via the layer-by-layer (LbL) method, combining alternating collagen I (COL) and rHS. These bilayers support cell adhesion and enable the incorporation of distinct sulfation levels on the culture surface. Examination of pro-mitogenic FGF and immunostimulatory IFN-γ release dynamics confirmed prolonged availability and sulfate level dependencies. Sulfated surfaces supported cell growth in low serum (2% FBS) and serum-free (SF) media at levels equivalent to standard culture conditions. Cell growth on rHS-coated surfaces in SF was comparable to that on heparin-coated surfaces and commercial surface-coated microcarriers in low serum. These growth benefits were observed in both planar and microcarrier (μCs) cultures. Additionally, rHS surfaces reduced β-galactosidase expression relative to uncoated surfaces, delaying cell senescence. Multivariate analysis of cytokines in conditioned media indicated that rHS-containing surfaces enhanced cytokine levels relative to uncoated surfaces during IFN-γ stimulation and correlated with decreased pro-inflammatory macrophage activity. Overall, utilizing highly sulfated rHS with COL reduces the need for exogenous growth factors and effectively supports MSC growth and anti-inflammatory potency on planar and microcarrier surfaces under minimal factor supplementation.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
- Bioengineering Department, Moffitt Cancer Center, Tampa, Florida 32611, United States
| | - Natalia A Theran-Suarez
- Chemical Engineering Department, University of Puerto Rico Mayaguez, 3550 General Atomics Ct, G02-102, Mayaguez, Puerto Rico 00681-9000, United States
| | - Carolina Rivera-Crespo
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - Leonel Velez-Roman
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - Bryan Thacker
- TEGA Therapeutics, Inc., 3550 General Atomics Ct, G02-102, San Diego, California 92121, United States
| | - Charles Glass
- TEGA Therapeutics, Inc., 3550 General Atomics Ct, G02-102, San Diego, California 92121, United States
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
- Chemical Engineering Department, University of Puerto Rico Mayaguez, 3550 General Atomics Ct, G02-102, Mayaguez, Puerto Rico 00681-9000, United States
| |
Collapse
|
4
|
Castilla-Casadiego DA, Morton LD, Loh DH, Pineda-Hernandez A, Chavda AP, Garcia F, Rosales AM. Peptoid-Cross-Linked Hydrogel Stiffness Modulates Human Mesenchymal Stromal Cell Immunoregulatory Potential in the Presence of Interferon-Gamma. Macromol Biosci 2024; 24:e2400111. [PMID: 38567626 PMCID: PMC11250919 DOI: 10.1002/mabi.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Human mesenchymal stromal cell (hMSC) manufacturing requires the production of large numbers of therapeutically potent cells. Licensing with soluble cytokines improves hMSC therapeutic potency by enhancing secretion of immunoactive factors but typically decreases proliferative ability. Soft hydrogels, however, have shown promise for boosting immunomodulatory potential, which may compensate for decreased proliferation. Here, hydrogels are cross-linked with peptoids of different secondary structures to generate substrates of various bulk stiffnesses but fixed network connectivity. Secretions of interleukin 6, monocyte chemoattractive protein-1, macrophage colony-stimulating factor, and vascular endothelial growth factor are shown to depend on hydrogel stiffness in the presence of interferon gamma (IFN-γ) supplementation, with soft substrates further improving secretion. The immunological function of these secreted cytokines is then investigated via coculture of hMSCs seeded on hydrogels with primary peripheral blood mononuclear cells (PBMCs) in the presence and absence of IFN-γ. Cocultures with hMSCs seeded on softer hydrogels show decreased PBMC proliferation with IFN-γ. To probe possible signaling pathways, immunofluorescent studies probe the nuclear factor kappa B pathway and demonstrate that IFN-γ supplementation and softer hydrogel mechanics lead to higher activation of this pathway. Overall, these studies may allow for production of more efficacious therapeutic hMSCs in the presence of IFN-γ.
Collapse
Affiliation(s)
| | - Logan D. Morton
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Darren H. Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ajay P. Chavda
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Francis Garcia
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrianne M. Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Cifuentes SJ, Domenech M. Heparin-collagen I bilayers stimulate FAK/ERK½ signaling via α2β1 integrin to support the growth and anti-inflammatory potency of mesenchymal stromal cells. J Biomed Mater Res A 2024; 112:65-81. [PMID: 37723658 DOI: 10.1002/jbm.a.37614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
Understanding mesenchymal stromal cells (MSCs) growth mechanisms in response to surface chemistries is essential to optimize culture methods for high-quality and robust cell yields in cell manufacturing applications. Heparin (HEP) and collagen 1 (COL) substrates have been reported to enhance cell adhesion, growth, viability, and secretory potential in MSCs. However, the biomolecular mechanisms underlying the benefits of combined HEP/COL substrates are unknown. This work used HEP/COL bilayered surfaces to investigate the role of integrin-HEP interactions in the advantages of MSC culture. The layer-by-layer approach (LbL) was used to create HEP/COL bilayers, which were made up of stacks of 8 and 9 layers that combined HEP and COL in an alternate arrangement. Surface spectroscopic investigations and laser scanning microscopy evaluations verified the biochemical fingerprint of each component and a total stacked bilayer thickness of roughly 150 nm. Cell growth and apoptosis in response to IC50 and IC75 levels of BTT-3033 and Cilengitide, α2β1 and αvβ3 integrin inhibitors respectively, were evaluated on HEP/COL coated surfaces using two bone marrow-derived MSC donors. While integrin activity did not affect cell growth rates, it significantly affected cell adhesion and apoptosis on HEP/COL surfaces. HEP-ending HEP/COL surfaces significantly increased FAK-ERK½ phosphorylation and endogenous cell COL deposition compared to COL, COL-ending HEP/COL and uncoated surfaces. BTT-3033 but not Cilengitide treatment markedly affected FAK-ERK½ activity levels on HEP-ending HEP/COL surfaces supporting a major role for α2β1 activity. BTT-3033 treatment on HEP-ending bilayers reduced MSC-mediated macrophage inhibitory activity and altered the cytokine profile of co-cultures. Overall, this study supports a novel role for HEP in regulating the survival and potency of MSCs via enhancing the α2β1-FAK-ERK½ signaling mechanism.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| |
Collapse
|
6
|
Haseli M, Pinzon-Herrera L, Hao X, Wickramasinghe SR, Almodovar J. Novel Strategy to Enhance Human Mesenchymal Stromal Cell Immunosuppression: Harnessing Interferon-Gamma Presentation in Metal-Organic Frameworks Embedded on Heparin/Collagen Multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16472-16483. [PMID: 37944116 DOI: 10.1021/acs.langmuir.3c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The immunomodulatory potential of human mesenchymal stromal cells (hMSCs) can be boosted when exposed to interferon-gamma (IFN-γ). While pretreating hMSCs with IFN-γ is a common practice to enhance their immunomodulatory effects, the challenge lies in maintaining a continuous IFN-γ presence within cellular environments. Therefore, in this research, we investigate the sustainable presence of IFN-γ in the cell culture medium by immobilizing it in water-stable metal-organic frameworks (MOFs) [PCN-333(Fe)]. The immobilized IFN-γ in MOFs was coated on top of multilayers composed of combinations of heparin (HEP) and collagen (COL) that were used as a bioactive surface. Multilayers were created by using a layer-by-layer assembly technique, with the final layer alternating between collagen (COL) and heparin (HEP). We evaluated the viability, differentiation, and immunomodulatory activity of hMSCs cultured on (HEP/COL) coated with immobilized IFN-γ in MOFs after 3 and 6 days of culture. Cell viability, compared to tissue culture plastic, was not affected by immobilized IFN-γ in MOFs when they were coated on (HEP/COL) multilayers. We also verified that the osteogenic and adipogenic differentiation of the hMSCs remained unchanged. The immunomodulatory activity of hMSCs was evaluated by examining the expression of indoleamine 2,3-dioxygenase (IDO) and 11 essential immunomodulatory markers. After 6 days of culture, IDO expression and the expression of 11 immunomodulatory markers were higher in (HEP/COL) coated with immobilized IFN-γ in MOFs. Overall, (HEP/COL) multilayers coated with immobilized IFN-γ in MOFs provide a sustained presentation of cytokines to potentiate the hMSC immunomodulatory activity.
Collapse
Affiliation(s)
- Mahsa Haseli
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Luis Pinzon-Herrera
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiaolei Hao
- Department of Biomedical Engineering, University of Arkansas, John A. White, Jr. Engineering Hall, 790 W. Dickson St. Suite 120, Fayetteville, Arkansas 72701, United States
| | - S Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
7
|
Phipps J, Haseli M, Pinzon-Herrera L, Wilson B, Corbitt J, Servoss S, Almodovar J. Delivery of Immobilized IFN-γ With PCN-333 and Its Effect on Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2023; 9:671-679. [PMID: 36598843 DOI: 10.1021/acsbiomaterials.2c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interferon-gamma (IFN-γ) plays a vital role in modulating the immunosuppressive properties of human mesenchymal stem/stromal cells (hMSCs) used in cell therapies. However, IFN-γ suffers from low bioavailability and degrades in media, creating a challenge when using IFN-γ during the manufacturing of hMSCs. Metal-organic frameworks (MOFs), with their porous interiors, biocompatibility, high loading capacity, and ability to be functionalized for targeting, have become an increasingly suitable platform for protein delivery. In this work, we synthesize the MOF PCN-333(Fe) and show that it can be utilized to immobilize and deliver IFN-γ to the local extracellular environment of hMSCs. In doing so, the cells proliferate and differentiate appropriately with no observed side effects. We demonstrate that PCN-333(Fe) MOFs containing IFN-γ are not cytotoxic to hMSCs, can promote the expression of proteins that play a role in immune response, and are capable of inducing indoleamine 2,3-dioxygenase (IDO) production similar to that of soluble IFN-γ at lower concentrations. Overall, using MOFs to deliver IFN-γ may be leveraged in the future in the manufacturing of therapeutically relevant hMSCs.
Collapse
Affiliation(s)
- Josh Phipps
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahsa Haseli
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Luis Pinzon-Herrera
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ben Wilson
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Joshua Corbitt
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Shannon Servoss
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jorge Almodovar
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
8
|
Yasamineh S, Kalajahi HG, Yasamineh P, Gholizadeh O, Youshanlouei HR, Matloub SK, Mozafari M, Jokar E, Yazdani Y, Dadashpour M. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19. Stem Cell Res Ther 2022; 13:257. [PMID: 35715852 PMCID: PMC9204679 DOI: 10.1186/s13287-022-02944-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
The SARS-COV-2 virus has infected the world at a very high rate by causing COVID-19 disease. Nearly 507 million individuals have been infected with this virus, with approximately 1.2% of these patients being dead, indicating that this virus has been out of control in many countries. While researchers are investigating how to develop efficient drugs and vaccines versus the COVID-19 pandemic, new superseded treatments have the potential to reduce mortality. The recent application of mesenchymal stem cells (MSCs) in a subgroup of COVID-19 patients with acute respiratory distress has created potential benefits as supportive therapy for this viral contagion in patients with acute conditions and aged patients with severe pneumonia. Consequently, within this overview, we discuss the role and therapeutic potential of MSCs and the challenges ahead in using them to treat viral infections, with highlighting on COVID-19 infection.
Collapse
Affiliation(s)
- Saman Yasamineh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Rahmani Youshanlouei
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Mozafari
- Cardiovascular Pharmacology Research Lab, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Jokar
- Department of Medical Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
9
|
Timsina H, McTyer J, Rao RR, Almodovar J. A comparative evaluation of layer-by-layer assembly techniques for surface modification of microcarriers used in human mesenchymal stromal cell manufacturing. Biotechnol J 2022; 17:e2100605. [PMID: 35377534 DOI: 10.1002/biot.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
The demand for large quantities of highly potent human mesenchymal stromal cells (hMSCs) is growing given their therapeutic potential. To meet high production needs, suspension-based cell cultures using microcarriers are commonly used. Microcarriers are commonly made of or coated with extracellular matrix proteins or charged compounds to promote cell adhesion and proliferation. In this work, we demonstrate a simple method (draining filter) to perform layer by layer (LbL) assembly on microcarriers to create multilayers of heparin and collagen and further demonstrate that these multilayers have a positive effect on hMSC viability after 48 hours of culture. The draining filter method is evaluated against two other methods found in literature - centrifugation and fluidized bed, showing that the draining filter method can perform the surface modification with greater efficiency and with less materials and steps needed in the coating process. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hemanta Timsina
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Jasmine McTyer
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC, 29634, USA
| | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| |
Collapse
|