1
|
Wu D, Li J, Wang C, Su Z, Su H, Chen Y, Yu B. Injectable silk fibroin peptide nanofiber hydrogel composite scaffolds for cartilage regeneration. Mater Today Bio 2024; 25:100962. [PMID: 38318476 PMCID: PMC10840349 DOI: 10.1016/j.mtbio.2024.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is essential for cartilage regeneration, but its susceptibility to enzymatic denaturation and high cost limit its application. Herein, we report Ac-LIANAKGFEFEFKFK-NH2 (LKP), a self-assembled peptide nanofiber hydrogel that can mimic the function of TGF-β1. The LKP hydrogel is simple to synthesize, and in vitro experiments confirmed its good biocompatibility and cartilage-promoting ability. However, LKP hydrogels suffer from poor mechanical properties and are prone to fragmentation; therefore, we prepared a series of injectable hydrogel composite scaffolds (SF-GMA/LKP) by combining LKP with glycidyl methacrylate (GMA)-modified silk fibroin (SF). SF-GMA/LKP composite scaffolds instantaneously induced in-situ filling of cartilage defects and, at the same time, relied on the interaction between LKP and SF-GMA interaction to prolong the duration of action of LKP. The SF-GMA/LKP10 and SF-GMA/LKP20 composite scaffolds had the best effect on neocartilage and subchondral bone reconstruction. This composite hydrogel scaffold can be used for high-quality cartilage repair.
Collapse
Affiliation(s)
- Deguang Wu
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jian Li
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Chengxinqiao Wang
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhiwen Su
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hao Su
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Bo Yu
- Department of Orthopedic and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
2
|
Yang G, Chen X, Shi W, Chen N, Liu Y, Zhang B, Shao Z. Facile Preparation of a Photo-Cross-Linked Silk Fibroin-Poly Ionic Liquid Hydrogel with Antifreezing and Ion Conductive Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1543-1552. [PMID: 38163251 DOI: 10.1021/acsami.3c15712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The silk fibroin (SF)/ionic liquid (IL) based hydrogel is a kind of remarkable substrate for flexible devices because of its subzero-temperature elasticity, electrical conductivity, and water retention, although the procedure of the gelation is considered complex and time-consuming. In this work, we introduced an approximate method for the development of novel photo-cross-linked SF/IL hydrogel, that is, SF-IMA/PIL hydrogel via the modification of silk fibroin chain with 2-isocyanatoethyl methacrylate (SF-IMA) in a certain ionic liquid with an unsaturated double bond. The chemical cross-linking between methacrylated SF and IL was triggered by UV light, while the physical cross-linking of the hydrogel was attributed to the β-sheet formation of SF in SF-IMA/IL mixed solution. In addition to being a UV-induced three-dimensional (3D) printable one, the SF-IMA/PIL hydrogel performed significant ionic conductivity between room temperature and -50 °C and water retention within a wide range of relative humidity, which were the featured advantages as the ionic liquid involved. Moreover, the static and dynamic mechanical tests demonstrated that the hydrogel reserved its great elasticity at -50 °C and displayed its stiffness transition temperatures between -100 and -70 °C.
Collapse
Affiliation(s)
- Gongwen Yang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xuyang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Wenjuan Shi
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Oliveira AR, Ramou E, Palma SICJ, Esteves C, Barbosa A, Roque ACA. Impact of the Cationic Moiety of Ionic Liquids on Chemoselective Artificial Olfaction. ACS MATERIALS AU 2023; 3:678-686. [PMID: 38089656 PMCID: PMC10636774 DOI: 10.1021/acsmaterialsau.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 10/13/2024]
Abstract
Ionogels and derived materials are assemblies of polymers and ionic liquids characterized by high stability and ionic conductivity, making them interesting choices as gas sensors. In this work, we assessed the effect of the ionic liquid moiety to generate ionogels and hybrid gels as electrical and optical gas sensors. Six ionic liquids consisting of a constant anion (chloride) and distinct cationic head groups were used to generate ionogels and hybrid gels and further tested as gas sensors in customized electronic nose devices. In general, ionogel-based sensors yielded higher classification accuracies of standard volatile organic compounds when compared to hybrid material-based sensors. In addition, the high chemical diversity of ionic liquids is further translated to a high functional diversity in analyte molecular recognition and sensing.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Efthymia Ramou
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Susana I. C. J. Palma
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Carina Esteves
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Arménio Barbosa
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Cecília Afonso Roque
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Applied
Molecular Biosciences Unit, Department of Chemistry, School of Science
and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Huang L, Shi J, Zhou W, Zhang Q. Advances in Preparation and Properties of Regenerated Silk Fibroin. Int J Mol Sci 2023; 24:13153. [PMID: 37685960 PMCID: PMC10487664 DOI: 10.3390/ijms241713153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the years, silk fibroin (SF) has gained significant attention in various fields, such as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining regenerated silk fibroin (RSF) involves degumming, dissolving, dialysis, and centrifugation. RSF can be further fabricated into films, sponges, microspheres, gels, nanofibers, and other forms. It is now understood that the dissolution method selected greatly impacts the molecular weight distribution and structure of RSF, consequently influencing its subsequent processing and application. This study comprehensively explores and summarizes different dissolution methods of SF while examining their effects on the structure and performance of RSF. The findings presented herein aim to provide valuable insights and references for researchers and practitioners interested in utilizing RSF in diverse fields.
Collapse
Affiliation(s)
| | | | | | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Oliveira AR, Costa HMA, Ramou E, Palma SICJ, Roque ACA. Effect of Polymer Hydrophobicity in the Performance of Hybrid Gel Gas Sensors for E-Noses. SENSORS (BASEL, SWITZERLAND) 2023; 23:3531. [PMID: 37050591 PMCID: PMC10098550 DOI: 10.3390/s23073531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Relative humidity (RH) is a common interferent in chemical gas sensors, influencing their baselines and sensitivity, which can limit the performance of e-nose systems. Tuning the composition of the sensing materials is a possible strategy to control the impact of RH in gas sensors. Hybrid gel materials used as gas sensors contain self-assembled droplets of ionic liquid and liquid crystal molecules encapsulated in a polymeric matrix. In this work, we assessed the effect of the matrix hydrophobic properties in the performance of hybrid gel materials for VOC sensing in humid conditions (50% RH). We used two different polymers, the hydrophobic PDMS and the hydrophilic bovine gelatin, as polymeric matrices in hybrid gel materials containing imidazolium-based ionic liquids, [BMIM][Cl] and [BMIM][DCA], and the thermotropic liquid crystal 5CB. Better accuracy of VOC prediction is obtained for the hybrid gels composed of a PDMS matrix combined with the [BMIM][Cl] ionic liquid, and the use of this hydrophobic matrix reduces the effect of humidity on the sensing performance when compared to the gelatin counterpart. VOCs interact with all the moieties of the hybrid gel multicomponent system; thus, VOC correct classification depends not only on the polymeric matrix used, but also on the IL selected, which seems to be key to achieve VOCs discrimination at 50% RH. Thus, hybrid gels' tunable formulation offers the potential for designing complementary sensors for e-nose systems operable under different RH conditions.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Henrique M. A. Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Efthymia Ramou
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Susana I. C. J. Palma
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Cecília A. Roque
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Recent Research Progress of Ionic Liquid Dissolving Silks for Biomedicine and Tissue Engineering Applications. Int J Mol Sci 2022; 23:ijms23158706. [PMID: 35955840 PMCID: PMC9369158 DOI: 10.3390/ijms23158706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids (ILs) show a bright application prospect in the field of biomedicine and energy materials due to their unique recyclable, modifiability, structure of cation and anion adjustability, as well as excellent physical and chemical properties. Dissolving silk fibroin (SF), from different species silkworm cocoons, with ILs is considered an effective new way to obtain biomaterials with highly enhanced/tailored properties, which can significantly overcome the shortcomings of traditional preparation methods, such as the cumbersome, time-consuming and the organic toxicity caused by manufacture. In this paper, the basic structure and properties of SF and the preparation methods of traditional regenerated SF solution are first introduced. Then, the dissolving mechanism and main influencing factors of ILs for SF are expounded, and the fabrication methods, material structure and properties of SF blending with natural biological protein, inorganic matter, synthetic polymer, carbon nanotube and graphene oxide in the ILs solution system are introduced. Additionally, our work summarizes the biomedicine and tissue engineering applications of silk-based materials dissolved through various ILs. Finally, according to the deficiency of ILs for dissolving SF at a high melting point and expensive cost, their further study and future development trend are prospected.
Collapse
|