1
|
Chylińska N, Maciejczyk M. Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes. Gels 2025; 11:281. [PMID: 40277717 DOI: 10.3390/gels11040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Hyaluronic acid (HA) is a linear, unbranched polysaccharide classified as a glycosaminoglycan. While HA is found in various tissues throughout the body, over half of its total proportion is found in the skin. The role of HA in the skin is complex and multifaceted. HA maintains proper hydration, elasticity, and skin firmness, serving as a key extracellular matrix (ECM) component. With age, HA production gradually decreases, leading to reduced water-binding capacity, drier and less elastic skin, and the formation of wrinkles. Additionally, HA plays an active role in the wound-healing process at every stage. This review summarizes the current background knowledge about the role of HA in skin aging and wound healing. We discuss the latest applications of HA in aging prevention, including anti-aging formulations, nutricosmetics, microneedles, nanoparticles, HA-based fillers, and skin biostimulators. Furthermore, we explore various HA-based dressings used in wound treatment, such as hydrogels, sponges, membranes, and films.
Collapse
Affiliation(s)
- Natalia Chylińska
- Independent Laboratory of Cosmetology, Medical University of Białystok, Akademicka 3, 15-267 Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Mickiewicza 2c, 15-022 Bialystok, Poland
| |
Collapse
|
2
|
Maikovych O, Pasetto P, Nosova N, Kudina O, Ostapiv D, Samaryk V, Varvarenko S. Functional Properties of Gelatin-Alginate Hydrogels for Use in Chronic Wound Healing Applications. Gels 2025; 11:174. [PMID: 40136880 PMCID: PMC11941921 DOI: 10.3390/gels11030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
In this study, a hydrogel material based on porcine gelatin and sodium alginate was synthesized for use as a dressing for chronic wound treatment. The hydrogels were covalently cross-linked using polyethylene glycol diglycidyl ether (PEGDE 500), and the interaction between the components was confirmed via FTIR. The properties of the resulting hydrogels were examined, including gel-fraction volume, swelling degree in different media, mechanical properties, pore size, cytotoxicity, and the ability to absorb and release analgesics (lidocaine, novocaine, sodium diclofenac). The hydrogel's resistance to enzymatic action by protease was enhanced both through chemical cross-linking and physical interactions between gelatin and alginate. The absorption capacity of the hydrogels, reaching 90 g per dm2 of the hydrogel dressing, indicates their potential for absorbing wound exudates. It was demonstrated that the antiseptic (chlorhexidine) contained in the structured gelatin-alginate hydrogels can be released into an infected substrate, resulting in a significant inhibition of pathogenic microorganisms (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Aspergillus niger). These results clearly demonstrate that the obtained hydrogel materials can serve as non-traumatic dressings for the treatment of chronic and/or infected wounds.
Collapse
Affiliation(s)
- Olha Maikovych
- Department of Organic Chemistry, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine; (N.N.); (V.S.); (S.V.)
| | - Pamela Pasetto
- Institut des Molécules et Matériaux du Mans, Faculté des Sciences & Techniques, Le Mans Université, Avnue Olivier Messiaen, 72085 Le Mans, Cedex 09, France;
| | - Nataliia Nosova
- Department of Organic Chemistry, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine; (N.N.); (V.S.); (S.V.)
| | - Olena Kudina
- CÚRAM Research Ireland Centre for Medical Devices, University of Galway, H92 W2TY Galway, Ireland;
| | - Dmytro Ostapiv
- Institute of Animal Biology NAAS, 38 V. Stusa Str., 79034 Lviv, Ukraine;
| | - Volodymyr Samaryk
- Department of Organic Chemistry, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine; (N.N.); (V.S.); (S.V.)
| | - Serhii Varvarenko
- Department of Organic Chemistry, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine; (N.N.); (V.S.); (S.V.)
| |
Collapse
|
3
|
Zhang J, Liu Z, Sun J, Yao Z, Lu H. The formation and performance tuning mechanism of starch-based hydrogels. Carbohydr Polym 2025; 350:123048. [PMID: 39647951 DOI: 10.1016/j.carbpol.2024.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Starch-based hydrogels, characterized by their three-dimensional network structures, are increasingly explored for their biodegradability, low cost, and abundance of modifiable hydroxyl groups. However, a comprehensive understanding of the mechanisms behind the formation and property modulation of these hydrogels has not been systematically described. Drawing from literature of the past decade, this review provides insights into designing multifunctional starch-based hydrogels through various gelation mechanism, crosslinking strategies, and second-network structure. This comprehensive review aims to establish a theoretical framework for controlling the properties of starch-based hydrogels. A crucial aspect of starch hydrogel formation is the dense, cellular structure produced by swollen particles; when these particles fully disrupt, amylose recrystallization creates "junction zones" essential for network stability. In double-network hydrogels, materials such as polyvinyl alcohol (PVA), sodium alginate (SA), and polyacrylamide (PAM) form an effective secondary network, enhancing the mechanical strength and versatility of the hydrogel. The functionalization of starch-based hydrogels is primarily achieved through the introduction of functional group, secondary networks, and ionic liquids.
Collapse
Affiliation(s)
- Jin Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Zihan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingxuan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuojun Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Jacquot G, Lopez Navarro P, Grange C, Boudali L, Harlepp S, Pivot X, Detappe A. Landscape of Subcutaneous Administration Strategies for Monoclonal Antibodies in Oncology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406604. [PMID: 39165046 DOI: 10.1002/adma.202406604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Indexed: 08/22/2024]
Abstract
In recent decades, subcutaneous (SC) administration of monoclonal antibodies (mAbs) has emerged as a promising alternative to intravenous delivery in oncology, offering comparable therapeutic efficacy while addressing patient preferences. This perspective article provides an in-depth analysis of the technological landscape surrounding SC mAb administration in oncology. It outlines various technologies under evaluation across developmental stages, spanning from preclinical investigations to the integration of established methodologies in clinical practice. Additionally, this perspective article explores emerging trends and prospective trajectories, shedding light on the evolving landscape of SC mAb administration. Furthermore, it emphasizes key checkpoints related to quality attributes essential for optimizing mAb delivery via the SC route. This review serves as a valuable resource for researchers, clinicians, and healthcare policymakers, offering insights into the advancement of SC mAb administration in oncology and its implications for patient care.
Collapse
Affiliation(s)
- Guillaume Jacquot
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Pedro Lopez Navarro
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Coralie Grange
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Lotfi Boudali
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/University of Strasbourg, Strasbourg, Cedex 2, 67087, France
| |
Collapse
|
5
|
Xue Z, Zhang M, Wang M, Wang S, Wang S, Wang P, Li J, Liu H. Development and characterization of adhesives constructed by soy protein isolate and tea polyphenols for enhanced tensile strength in plant-protein meat applications. Food Chem 2024; 453:139643. [PMID: 38761734 DOI: 10.1016/j.foodchem.2024.139643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The study aimed to evaluate a food adhesive developed using tea polyphenols (TPs) with soybean protein isolate (SPI) to create a cohesive bond between soy protein gel and simulated fat. Upon the addition of 5.0 % TPs, significant increases in viscosity, thermal stability, and crystallinity were noted in adhesives, suggesting the formation of a cohesive network. Furthermore, TPs effectively enhanced adhesion strength, with the optimal addition being 5.0 %. This enhancement can be attributed to hydrogen bonding, hydrophobic and electrostatic interactions between TPs and SPI molecules. TPs induced a greater expansion of the protein structure, exposing numerous buried hydrophobic groups to a more hydrophilic and polar environment. However, excessive TPs were found to diminish adhesion strength. This can be attributed to enhanced reactions between TPs and SPI, where high molecular weight SPI-TPs cooperatively aggregate to form agglomerates that eventually precipitated, rendering the adhesive network inhomogeneous, less stable, and more prone to disruption.
Collapse
Affiliation(s)
- Zixi Xue
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Minghao Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Meiquan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
6
|
Zanbili F, Gozali Balkanloo P, Poursattar Marjani A. Semi-IPN polysaccharide-based hydrogels for effective removal of heavy metal ions and dyes from wastewater: a comprehensive investigation of performance and adsorption mechanism. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0004. [PMID: 39236101 DOI: 10.1515/reveh-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
The escalating issue of environmental pollutants necessitates efficient, sustainable, and innovative wastewater treatment technologies. This review comprehensively analyzes the mechanisms and isotherms underlying the adsorption processes of semi-interpenetrating polymer network (semi-IPN) polysaccharide-based hydrogels to remove heavy metal ions and dyes from wastewater. Polysaccharides are extensively utilized in hydrogel synthesis due to their biocompatibility, cost-effectiveness, and non-toxic nature. The synthesis of these hydrogels as semi-IPNs enhances their mechanical and structural robustness and adsorption capacity. This review explores the key parameters affecting adsorption performance, including pH, temperature, contact time, and adsorbent dosage. Findings highlight that semi-IPN polysaccharide-based hydrogels exhibit remarkable adsorption capabilities through electrostatic interactions, ion exchange, and surface complexation. Furthermore, this review highlights the distinct advantages of semi-IPNs over other polymer networks. Semi-IPNs offer improved mechanical stability, higher adsorption efficiencies, and better reusability, making them a promising solution for wastewater treatment. Detailed isotherm models, including Langmuir and Freundlich isotherms, were studied to understand these hydrogels' adsorption behavior and capacity for different pollutants. This study highlights the potential of semi-IPN polysaccharide-based hydrogels as effective adsorbents for heavy metals and dyes and as a promising solution for mitigating environmental pollution. The insights provided herein contribute to developing advanced materials for environmental remediation, aligning with global sustainability goals, and advancing wastewater treatment technology.
Collapse
Affiliation(s)
- Fatemeh Zanbili
- Department of Organic Chemistry, Faculty of Chemistry, 117045 Urmia University , Urmia, Iran
| | - Peyman Gozali Balkanloo
- Department of Organic Chemistry, Faculty of Chemistry, 117045 Urmia University , Urmia, Iran
| | | |
Collapse
|
7
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
8
|
Zhang J, Zhang S, Liu C, Lu Z, Li M, Hurren C, Wang D. Photopolymerized multifunctional sodium alginate-based hydrogel for antibacterial and coagulation dressings. Int J Biol Macromol 2024; 260:129428. [PMID: 38232887 DOI: 10.1016/j.ijbiomac.2024.129428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Trauma caused by tissue damage in clinical applications has posed a serious threat to public safety. Dressings with a single function cannot meet the needs of wound healing, but multifunctional dressings are difficult to achieve and obtain. To address this issue, this research designed a facile one-pot photo-crosslinking method to prepare multifunctional sodium alginate-based hydrogel dressings for effective wound healing. According to irregular wounds, sodium alginate-based hydrogel dressings can be quickly prepared anytime and anywhere. The structure and physicochemical properties of hydrogels are regulated by modulating the proportion of main components sodium alginate and acrylamide. The results showed the sodium alginate-based composite hydrogel as a candidate multifunctional dressing that exhibits excellent stretchability and compressibility, viscoelasticity, and suitable tissue-like adhesion. In vitro drug release and antibacterial experiments indicated that the hydrogel has effective antibacterial properties against S. aureus and P. aeruginosa. Furthermore, the haemostatic behaviour of the hydrogel was demonstrated using the coagulation activation test, whole blood-clotting test, and blood cell and platelet adhesion experiments. All these results demonstrated that the sodium alginate-based hydrogel had high application potential as a multifunctional medical dressing for wound healing.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; Deakin University, Institute for Frontier Materials, Geelong 3216, Australia
| | - Siwei Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Chao Liu
- Deakin University, Institute for Frontier Materials, Geelong 3216, Australia
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Christopher Hurren
- Deakin University, Institute for Frontier Materials, Geelong 3216, Australia.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
9
|
Azarian M, Junyusen T, Sutapun W. Biogenic Vaterite Calcium Carbonate-Silver/Poly(Vinyl Alcohol) Film for Wound Dressing. ACS OMEGA 2024; 9:955-969. [PMID: 38222591 PMCID: PMC10785620 DOI: 10.1021/acsomega.3c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
Vaterite, a spherical polymorph of CaCO3, shows potential as a carrier for the stable and controlled release of silver nanoparticles (AgNPs), preventing their aggregation or loss of efficacy during application. Furthermore, the embedding of CaCO3-Ag in a poly(vinyl alcohol) (PVA) matrix helps effectively encapsulate and protect the CaCO3-Ag microspheres and provides mechanical stability for better contact with the wound surface. This article focuses on the fabrication of an antimicrobial and biocompatible absorbent film embedded with precipitated biogenic vaterite CaCO3-Ag microspheres. The impact of vaterite CaCO3-Ag on the physical, chemical, nanomechanical, biocompatibility, and antimicrobial properties of the PVA films was investigated. The morphology study revealed a bilayer film structure with an inactive and active surface containing homogeneously distributed vaterite CaCO3-Ag. The X-ray photoelectron spectroscopy (XPS) analysis of the spin-orbit splitting in the Ag 3d5/2 and Ag 3d3/2 peaks indicated the presence of both metallic and ionic states of silver in vaterite CaCO3-Ag prior to its incorporation into the PVA polymer matrix. However, upon embedding in the PVA matrix, a subsequent transformation to solely ionic states was observed. The nanomechanical properties of PVA improved, and the reduced modulus and hardness increased to 14.62 ± 5.23 and 0.64 ± 0.29 GPa, respectively. The films demonstrate a significant activity toward Gram-negative Escherichia coli bacteria. The release of AgNPs was studied in both open and closed systems at pH 6, mimicking the pH environment of the wound, and it demonstrated a dependency on the type of capping agent used for synthesis and loading of AgNPs. The results further revealed the biocompatibility of the prepared films with human dermal fibroblast cells at a concentration of ≤5 mg/mL, making them applicable and functional for wound dressing applications.
Collapse
Affiliation(s)
- Mohammad
Hossein Azarian
- Research
Center for Biocomposite Materials for Medical, Agricultural and Food
Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tiraporn Junyusen
- School
of Agricultural Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wimonlak Sutapun
- Research
Center for Biocomposite Materials for Medical, Agricultural and Food
Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School
of Polymer Engineering, Suranaree University
of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
10
|
Rizzo C, Cancemi P, Buttacavoli M, Di Cara G, D'Amico C, Billeci F, Marullo S, D'Anna F. Insights about the ability of folate based supramolecular gels to act as targeted therapeutic agents. J Mater Chem B 2023; 11:7721-7738. [PMID: 37466082 DOI: 10.1039/d3tb01389h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
With the aim to obtain targeted chemotherapeutic agents, imidazolium and ammonium-based folate salts were synthesized. Their photophysical behavior was investigated both in buffer and buffer/DMSO solution as well as in solid phase, performing UV-vis and fluorescence investigations. Properties of the aggregates were also analyzed by dynamic light scattering. Gelation ability of the salts was analyzed in biocompatible solvents, and gel phases obtained were characterized by determining critical gelation concentrations and gel-solution transition temperatures. Insights about gelator interactions in the tridimensional network were also gained performing ATR-FTIR investigation. Properties of soft materials were further analyzed performing rheology measurements, scanning electron microscopy, fluorescence and resonance light scattering investigations. Antiproliferative activity of organic salts was tested towards two breast cancer cell lines, expressing different levels of folate receptor, namely MDA-MB-231 and MCF-7, and a normal epithelial cell line, like h-TER T-RPE-1, by using MTT assay. Dichlodihydrofluorescein acetate test was performed to verify the role of oxidative stress in cell death. Finally, antiproliferative activity was also evaluated in gel phase, to verify if salts were able to retain biological activity also after the entrapment in the gelatinous network. Results collected evidence that folate based organic salts were able to behave as targeted chemotherapeutic agents both in solution and gel phase, showing uptake mechanism and selectivity indexes that depend on both cancer cell line nature and salt structure.
Collapse
Affiliation(s)
- Carla Rizzo
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| | - Patrizia Cancemi
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Miriam Buttacavoli
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Gianluca Di Cara
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Cesare D'Amico
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Floriana Billeci
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| | - Salvatore Marullo
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| | - Francesca D'Anna
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| |
Collapse
|