1
|
Liu T, Lei H, Qu L, Zhu C, Ma X, Fan D. Algae-inspired chitosan-pullulan-based multifunctional hydrogel for enhanced wound healing. Carbohydr Polym 2025; 347:122751. [PMID: 39486980 DOI: 10.1016/j.carbpol.2024.122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
Chronic wounds caused by hyperglycaemia, hypoxia and bacterial infections are common complications in diabetic patients and chronic wound repair is extremely challenging in clinical practice. A series of hydrogels QPMP with good antioxidant and antimicrobial functions were prepared based on quaternized chitosan (QCS), oxidized pullulan polysaccharide (OP), dopamine-coated polypyrrole (PPY@PDA), and Chlorella vulgaris. The Schiff base cross-linking between the quaternized chitosan (QCS) and oxidized pullulan polysaccharide (OP) constitutes the basic skeleton of the hydrogel, and imparts a certain antimicrobial ability to the hydrogel. Chlorella vulgaris continuously produced oxygen under light conditions to relieve wound hypoxia and promote wound healing. The incorporation of PPY@PDA gave the hydrogel near-infrared (NIR) irradiation-assisted bactericidal activity and antioxidant activity, and as a conductive hydrogel, the hydrogel can be used to sense wound exudate and temperature changes, which can help to achieve the integration of diagnosis and treatment of wound healing. Most importantly, in a chronic wound model, the QPMP hydrogel was more effective in controlling the level of wound inflammation and promoting collagen deposition, angiogenesis, and early wound closure compared to the HeraDerm dressing. Therefore, this conductive oxygen-producing hydrogel is extremely beneficial for chronic wound healing in diabetes.
Collapse
Affiliation(s)
- Taishan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China; Xi'an Giant Biotechnology Co., Ltd., Xi'an, 710076, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Moreira MS, Mota ME, Ariga SKK, Jaguar GC, Marques MM. Mesenchymal stem cell therapies evidence in the treatment of irradiated salivary glands: A scoping review. J Clin Exp Dent 2024; 16:e1547-e1554. [PMID: 39822783 PMCID: PMC11733895 DOI: 10.4317/jced.62242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025] Open
Abstract
Background Radiotherapy is one of the main treatments for head and neck cancer; however, due to its non-selectivity the glandular tissue can be affected. This scoping review aimed to identify the evidence about mesenchymal stem cell therapies for irradiated salivary gland regeneration. Material and Methods Two independent reviewers performed a literature search in MEDLINE/PubMed, Scopus, and Web of Science. The inclusion criteria were: 1) studies evaluation regeneration of irradiated salivary glands by stem cell therapies (cell-based or cell-free), (2) in vivo studies. Results The search resulted in 13 included studies. In general, both therapies demonstrated increased salivary levels, with mucin and amylase increased and structural protection of acinar cells. The cell-free therapy based on labial glands stem cell extract demonstrated a higher number of parasympathetic nerves. Conclusions Stem cell therapies (cell-free and cell-based) appear promising strategies for recovering saliva production in patients presenting irradiation-induced hyposalivation, with positive results toward regeneration of the form and function of the glands. However, due to the scarcity and heterogenicity of these pre-clinical studies, it is not possible to indicate which is the more indicated therapy. Key words:Mesenchymal stem cells, extracellular vesicles, exosomes, salivary glands, stem cell biology, hyposalivation, radiotherapy.
Collapse
Affiliation(s)
- Maria Stella Moreira
- Department of Stomatology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Emília Mota
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Suely Kunimi Kubo Ariga
- School of Medicine, Emergency Medicine Laboratory, University of São Paulo, São Paulo, SP, Brazil
| | | | - Márcia Martins Marques
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
- AALZ, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
3
|
Rajput JH, Rathi V, Mukherjee A, Yadav P, Gupta T, Das B, Poundarik A. A novel polyurethane-based silver foam dressing with superior antimicrobial action for management of infected chronic wounds. Biomed Mater 2024; 20:015005. [PMID: 39509820 DOI: 10.1088/1748-605x/ad8fe8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Wound healing is a complex and dynamic process supported by several cellular events. Around 13 million individuals globally suffer from chronic wounds yearly, for which dressings with excellent antimicrobial activity and cell viability (>70%, as per ISO 10993) are needed. Excessive use of silver can cause cytotoxicity and has been linked to increasing antimicrobial resistance. In this study, HDI Ag foam was synthesized using a safer hexamethylene diisocyanate-based prepolymer (HDI prepolymer) instead of commonly used diisocyanates like TDI and MDI and substantially lower Ag content than that incorporated in other Ag foams. In vitro characteristics of the HDI Ag foam were evaluated in comparison with leading clinically used foam-based dressings. All dressings underwent a detailed characterization in accordance with industrially accepted BS EN 13726 standards. The HDI Ag foam exhibited highest antimicrobial efficiency againstS. aureusandP. aeruginosa(static condition), with the lowest amount of Ag (0.2 wt%) on the wound contact surface. The extracts from HDI Ag foam showed superior cell viability (>70%), when tested on the L929 mouse fibroblast cell line. Measurements of moisture vapor transmission, fluid handling, physico-chemical and mechanical properties ensured that the HDI foam was clinically acceptable for chronic wound patients.
Collapse
Affiliation(s)
- Jay Hind Rajput
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Varun Rathi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Pankaj Yadav
- Sheela Foam Ltd, Noida, Uttar Pradesh 201301, India
| | - Tarush Gupta
- Department of Plastic Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Atharva Poundarik
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| |
Collapse
|
4
|
Humenik F, Maloveská M, Hudáková N, Petroušková P, Šufliarska Z, Horňáková Ľ, Valenčáková A, Kožár M, Šišková B, Mudroňová D, Bartkovský M, Čížková D. Impact of Canine Amniotic Mesenchymal Stem Cell Conditioned Media on the Wound Healing Process: In Vitro and In Vivo Study. Int J Mol Sci 2023; 24:ijms24098214. [PMID: 37175924 PMCID: PMC10179513 DOI: 10.3390/ijms24098214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to provide a beneficial treatment effect of mesenchymal stem cell products derived from the canine amniotic membrane (AM-MSC) on the complicated wound healing process in dogs. AM-MSCs were characterized in terms of morphology, phenotypic profile, and multilineage differentiation potential. The in vitro study of the effect of canine amniotic mesenchymal stem cell conditioned media (AMMSC-CM) on a primary skin fibroblast cell culture scratch assay showed a decrease in the measured scratch area of about 66.39% against the negative control (Dulbecco's Modified Eagle's Medium-32.55%) and the positive control (Dulbecco's Modified Eagle's Medium supplemented with FGF2, N2, B27, and EGF-82.077%) after 72 h treatment. In the experimental study, seven dogs with complicated nonhealing wounds were treated with a combination of antibiotics, NSAIDs, and local AMMSC-CM application. After 15 days of therapy, we observed a 98.47% reduction in the wound surface area as opposed to 57.135% in the control group treated by conventional therapy based on debridement of necrotic tissue, antibiotic therapy, pain management, and change of wound dressing.
Collapse
Affiliation(s)
- Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Marcela Maloveská
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Nikola Hudáková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Patrícia Petroušková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Zuzana Šufliarska
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Ľubica Horňáková
- Small Animal Clinic, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Alexandra Valenčáková
- Small Animal Clinic, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Martin Kožár
- Small Animal Clinic, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Barbora Šišková
- Small Animal Clinic, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Dagmar Mudroňová
- Institute of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Martin Bartkovský
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Daša Čížková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| |
Collapse
|
5
|
Koh K, Wang JK, Chen JXY, Hiew SH, Cheng HS, Gabryelczyk B, Vos MIG, Yip YS, Chen L, Sobota RM, Chua DKK, Tan NS, Tay CY, Miserez A. Squid Suckerin-Spider Silk Fusion Protein Hydrogel for Delivery of Mesenchymal Stem Cell Secretome to Chronic Wounds. Adv Healthc Mater 2023; 12:e2201900. [PMID: 36177679 DOI: 10.1002/adhm.202201900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Indexed: 02/03/2023]
Abstract
Chronic wounds are non-healing wounds characterized by a prolonged inflammation phase. Excessive inflammation leads to elevated protease levels and consequently to a decrease in growth factors at wound sites. Stem cell secretome therapy has been identified as a treatment strategy to modulate the microenvironment of chronic wounds via supplementation with anti-inflammatory/growth factors. However, there is a need to develop better secretome delivery systems that are able to encapsulate the secretome without denaturation, in a sustained manner, and that are fully biocompatible. To address this gap, a recombinant squid suckerin-spider silk fusion protein is developed with cell-adhesion motifs capable of thermal gelation at physiological temperatures to form hydrogels for encapsulation and subsequent release of the stem cell secretome. Freeze-thaw treatment of the protein hydrogel results in a modified porous cryogel that maintains slow degradation and sustained secretome release. Chronic wounds of diabetic mice treated with the secretome-laden cryogel display increased wound closure, presence of endothelial cells, granulation wound tissue thickness, and reduced inflammation with no fibrotic scar formation. Overall, these in vivo indicators of wound healing demonstrate that the fusion protein hydrogel displays remarkable potential as a delivery system for secretome-assisted chronic wound healing.
Collapse
Affiliation(s)
- Kenrick Koh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637335, Singapore.,Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Jun Kit Wang
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - James Xiao Yuan Chen
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Shu Hui Hiew
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Bartosz Gabryelczyk
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Liyan Chen
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Damian Kang Keat Chua
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Chor Yong Tay
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
6
|
Yu H, Feng M, Mao G, Li Q, Zhang Z, Bian W, Qiu Y. Implementation of Photosensitive, Injectable, Interpenetrating, and Kartogenin-Modified GELMA/PEDGA Biomimetic Scaffolds to Restore Cartilage Integrity in a Full-Thickness Osteochondral Defect Model. ACS Biomater Sci Eng 2022; 8:4474-4485. [PMID: 36074133 DOI: 10.1021/acsbiomaterials.2c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cartilage defects caused by mechanical tear and wear are challenging clinical problems. Articular cartilage has unique load-bearing properties and limited self-repair ability. The current treatment methods, such as microfractures and autogenous cartilage transplantation to repair full-thickness cartilage defects, have apparent limitations. Tissue engineering technology has the potential to repair cartilage defects and directs current research development. To enhance the regenerative capacities of cartilage in weight-bearing areas, we attempted to develop a biomimetic scaffold loaded with a chondroprotective factor that can recreate structure, restore mechanical properties, and facilitate anabolic metabolism in larger joint defects. For enhanced spatial control over both bone and cartilage layers, it is envisioned that biomaterials that meet the needs of both tissue components are required for successful osteochondral repair. We used gelatin methacrylate (GELMA) and polyethylene glycol diacrylate (PEGDA) light-cured dual-network cross-linking modes that can significantly increase the mechanical properties of scaffolds and are capable of restoring function and prolonging the degradation time. Once the hydrogel complex was injected into the osteochondral defect, in situ UV light curing was applied to seamlessly connect the defect repair tissue with the surrounding normal cartilage tissue. The small molecule active substance kartogenin (KGN) can promote cartilage repair. We encapsulated KGN in biomimetic scaffolds so that, as the scaffold degrades, scaffold-loaded KGN was slowly released to induce endogenous mesenchymal stem cells to home and differentiate into chondrocytes to repair defective cartilage tissue. Our experiments have proven that, compared with the control group, GELMA/PEGDA + KGN repaired cartilage defects and restored cartilage to hyaline cartilage. Our study suggests that implementing photosensitive, injectable, interpenetrating, and kartogenin-modified GELMA/PEDGA biomimetic scaffolds may be a novel approach to restore cartilage integrity in full-thickness osteochondral defects.
Collapse
Affiliation(s)
- Haiquan Yu
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang 050001, People's Republic of China
| | - Meng Feng
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Genwen Mao
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, People's Republic of China
| | - Qian Li
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang 050001, People's Republic of China
| | - Zhifeng Zhang
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Weiguo Bian
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yusheng Qiu
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
7
|
Ibrahim R, Mndlovu H, Kumar P, Adeyemi SA, Choonara YE. Cell Secretome Strategies for Controlled Drug Delivery and Wound-Healing Applications. Polymers (Basel) 2022; 14:2929. [PMID: 35890705 PMCID: PMC9324118 DOI: 10.3390/polym14142929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
There is significant interest in using stem cells in the management of cutaneous wounds. However, potential safety, efficacy, and cost problems associated with whole-cell transplantation hinder their clinical application. Secretome, a collective of mesenchymal stem-cell-stored paracrine factors, and immunomodulatory cytokines offer therapeutic potential as a cell-free therapy for the treatment of cutaneous wounds. This review explores the possibility of secretome as a treatment for cutaneous wounds and tissue regeneration. The review mainly focuses on in vitro and in vivo investigations that use biomaterials and secretome together to treat wounds, extend secretome retention, and control release to preserve their biological function. The approaches employed for the fabrication of biomaterials with condition media or extracellular vesicles are discussed to identify their future clinical application in wound treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (R.I.); (H.M.); (P.K.); (S.A.A.)
| |
Collapse
|
8
|
Huang Y, Li X, Yang L. Hydrogel Encapsulation: Taking the Therapy of Mesenchymal Stem Cells and Their Derived Secretome to the Next Level. Front Bioeng Biotechnol 2022; 10:859927. [PMID: 35433656 PMCID: PMC9011103 DOI: 10.3389/fbioe.2022.859927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Biomaterials have long been the focus of research and hydrogels are representatives thereof. Hydrogels have attracted much attention in the medical sciences, especially as a candidate drug-carrier. Mesenchymal stem cells (MSC) and MSC-derived secretome are a promising therapeutic method, owing to the intrinsic therapeutic properties thereof. The low cell retention and poor survival rate of MSCs make further research difficult, which is a problem that hydrogel encapsulation largely solved. In this review, safety and feasibility of hydrogel-encapsulated MSCs, the improvement of the survival, retention, and targeting, and the enhancement of their therapeutic effect by hydrogels were studied. The status of the hydrogel-encapsulated MSC secretome was also discussed.
Collapse
Affiliation(s)
- Yuling Huang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin Li, ; Lina Yang,
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin Li, ; Lina Yang,
| |
Collapse
|
9
|
Wu X, Jin S, Ding C, Wang Y, He D, Liu Y. Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Front Microbiol 2022; 12:804813. [PMID: 35046923 PMCID: PMC8761948 DOI: 10.3389/fmicb.2021.804813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial diseases are a global health threat, leading to tremendous casualties and economic losses. The strategy to treat microbial diseases falls into two broad categories: pathogen-directed therapy (PDT) and host-directed therapy (HDT). As the typical PDT, antibiotics or antiviral drugs directly attack bacteria or viruses through discerning specific molecules. However, drug abuse could result in antimicrobial resistance and increase infectious disease morbidity. Recently, the exosome therapy, as a HDT, has attracted extensive attentions for its potential in limiting infectious complications and targeted drug delivery. Mesenchymal stem cell-derived exosomes (MSC-Exos) are the most broadly investigated. In this review, we mainly focus on the development and recent advances of the application of MSC-Exos on microbial diseases. The review starts with the difficulties and current strategies in antimicrobial treatments, followed by a comprehensive overview of exosomes in aspect of isolation, identification, contents, and applications. Then, the underlying mechanisms of the MSC-Exo therapy in microbial diseases are discussed in depth, mainly including immunomodulation, repression of excessive inflammation, and promotion of tissue regeneration. In addition, we highlight the latest progress in the clinical translation of the MSC-Exo therapy, by summarizing related clinical trials, routes of administration, and exosome modifications. This review will provide fundamental insights and future perspectives on MSC-Exo therapy in microbial diseases from bench to bedside.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
10
|
Yang X, Zhang C, Zhang T, Xiao J. Cobalt-doped Ti surface promotes immunomodulation. Biomed Mater 2021; 17. [PMID: 34942605 DOI: 10.1088/1748-605x/ac4612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Here, cobalt-doped plasma electrolytic oxidation (PEO) coatings with different cobalt contents were prepared on Ti implants. The cobalt ions in the PEO coating exhibited a slow and sustainable release and thus showed excellent biocompatibility and enhanced cell adhesion. In vitro ELISA and RT-PCR assays demonstrated that the cobalt-loaded Ti showed immunomodulatory functions to macrophages and upregulated the expression of anti-inflammatory (M1 type) genes and downregulated expression levels of pro-inflammatory (M2 type) genes compared with that of pure Ti sample. High cobalt content induced increased macrophage polarization into the M2 type. Furthermore, the findings from the in vivo air pouch model suggested that cobalt-loaded Ti could mitigate inflammatory reactions. The present work provides a novel strategy to exploit the immunomodulatory functions of implant materials.
Collapse
Affiliation(s)
- Xiaoming Yang
- Fujian Medical University Affiliated First Quanzhou Hospital, 248~252, East Street, Licheng District, Quanzhou, Fujian, 362000, CHINA
| | - Chi Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, 106 Zhongshan 2nd Road Yuexiu District, Guangzhou, Guangdong, 510080, CHINA
| | - Tao Zhang
- PLA General Hospital of Southern Theatre Command, 1838 North, Guangzhou Avenue, Guangzhou, 510010, CHINA
| | - Jin Xiao
- Guangdong Provincial People's Hospital, 106 Zhongshan 2nd Road Yuexiu District, Guangzhou, 510080, CHINA
| |
Collapse
|