1
|
Digestive Enzyme Activity and Protein Degradation in Plasma of Heart Failure Patients. Cell Mol Bioeng 2021; 14:583-596. [PMID: 34900012 PMCID: PMC8630255 DOI: 10.1007/s12195-021-00693-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/20/2021] [Indexed: 11/11/2022] Open
Abstract
Introduction Heart failure is associated with degradation of cell functions and extracellular matrix proteins, but the trigger mechanisms are uncertain. Our recent evidence shows that active digestive enzymes can leak out of the small intestine into the systemic circulation and cause cell dysfunctions and organ failure. Methods Accordingly, we investigated in morning fasting plasma of heart failure (HF) patients the presence of pancreatic trypsin, a major enzyme responsible for digestion. Results Western analysis shows that trypsin in plasma is significantly elevated in HF compared to matched controls and their concentrations correlate with the cardiac dysfunction biomarker BNP and inflammatory biomarkers CRP and TNF-α. The plasma trypsin levels in HF are accompanied by elevated pancreatic lipase concentrations. The trypsin has a significantly elevated activity as determined by substrate cleavage. Mass spectrometry shows that the number of plasma proteins in the HF patients is similar to controls while the number of peptides was increased about 20% in HF patients. The peptides are derived from extracellular and intracellular protein sources and exhibit cleavage sites by trypsin as well as other degrading proteases (data are available via ProteomeXchange with identifier PXD026332). Connclusions These results provide the first evidence that active digestive enzymes leak into the systemic circulation and may participate in myocardial cell dysfunctions and tissue destruction in HF patients. Conclusions These results provide the first evidence that active digestive enzymes leak into the systemic circulation and may participate in myocardial cell dysfunctions and tissue destruction in HF patients. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00693-w.
Collapse
|
2
|
Pham AK, Wu CW, Qiu X, Xu J, Smiley-Jewell S, Uyeminami D, Upadhyay P, Zhao D, Pinkerton KE. Differential lung inflammation and injury with tobacco smoke exposure in Wistar Kyoto and spontaneously hypertensive rats. Inhal Toxicol 2020; 32:328-341. [PMID: 32781858 PMCID: PMC8034838 DOI: 10.1080/08958378.2020.1805052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and has been associated with periods of intense lung inflammation. The objective of this study was to characterize whether similar rat strains, possessing different genetic predispositions, might play a role in exacerbating the pathophysiology of COPD-like cellular and structural changes with progressive 12-week exposure to tobacco smoke (TS). Normotensive Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats were compared. MATERIALS AND METHODS WKY and SH rats were exposed to filtered air or to tobacco smoke at a particulate concentration of 80 mg/m3 for 4, 8, or 12 weeks. Necropsy was performed 24 h after the last exposure to obtain cells by bronchoalveolar lavage for total cell and differential counts. Scoring of lung tissues and immunohistochemical staining for M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages were performed on paraffin-embedded lung sections. RESULTS AND DISCUSSION With progressive exposure, TS-exposed SH rats demonstrated significant airspace enlargement, mucin production, and lung inflammation compared to their FA control and TS-matched WKY rats. Moreover, SH rats also demonstrated increased expression of the M1 marker in alveolar macrophages compared to FA control, as well as the M2 marker compared to controls and TS-exposed WKY rats. CONCLUSION The progressive tobacco smoke exposure contributes to persistent lung injury and inflammation that can be significantly enhanced by rat strain susceptibility in the genesis of COPD.
Collapse
Affiliation(s)
- Alexa K. Pham
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Xing Qiu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jingyi Xu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | | | - Dale Uyeminami
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Dewei Zhao
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Chan AHW, Schmid-Schönbein GW. Pancreatic source of protease activity in the spontaneously hypertensive rat and its reduction during temporary food restriction. Microcirculation 2019; 26:e12548. [PMID: 30946505 DOI: 10.1111/micc.12548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The mechanisms underlying cell and organ dysfunctions in hypertension are uncertain. The spontaneously hypertensive rat (SHR) has elevated levels of unchecked degrading proteases compared to the control Wistar Kyoto (WKY) rat. The extracellular proteases destroy membrane receptors leading to cell dysfunctions, including arteriolar constriction and elevated blood pressure. Our goal was to identify potential sources of the uncontrolled enzymatic activity. METHODS Zymographic and digital immunohistochemical measurements in SHR pancreas and intestine were obtained as part of the digestive system with high levels of degrading enzymes. OBJECTIVE The results showed that SHRs have significantly higher protease activity than WKY in pancreas (22.04 ± 9.01 vs 13.02 ± 3.92 casein fluorescence intensity unit; P < 0.05) and pancreatic venules (0.011 ± 0.003 vs 0.005 ± 0.003 trypsin absorbance; P < 0.05) as well as in venous blood (71.07 ± 13.92 vs 36.44 ± 16.59 casein fluorescence intensity unit; P < 0.05). The enzymatic activity is contributed by trypsin and chymotrypsin. Furthermore, a decrease of these enzyme activity levels achieved during a short-term fasting period is associated with a reduction in systolic blood pressurein SHR (135 ± 8 mm Hg vs 124 ± 7 mm Hg; P < 0.05). CONCLUSIONS The results suggest the pancreas of the SHR is a potential source for serine proteases leaking into the circulation and contributing to its protease activity.
Collapse
Affiliation(s)
- Amy Hsueh Wen Chan
- Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, San Diego, California
| | - Geert W Schmid-Schönbein
- Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
4
|
Sex-specific differences in hepatic steatosis in obese spontaneously hypertensive (SHROB) rats. Biol Sex Differ 2018; 9:40. [PMID: 30201044 PMCID: PMC6131947 DOI: 10.1186/s13293-018-0202-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
Background Patients with metabolic syndrome, who are characterized by co-existence of insulin resistance, hypertension, hyperlipidemia, and obesity, are also prone to develop non-alcoholic fatty liver disease (NAFLD). Although the prevalence and severity of NAFLD is significantly greater in men than women, the mechanisms by which gender modulates the pathogenesis of hepatic steatosis are poorly defined. The obese spontaneously hypertensive (SHROB) rats represent an attractive model of metabolic syndrome without overt type 2 diabetes. Although pathological manifestation caused by the absence of a functional leptin receptor has been extensively studied in SHROB rats, it is unknown whether these animals elicited sex-specific differences in the development of hepatic steatosis. Methods We compared hepatic pathology in male and female SHROB rats. Additionally, we examined key biochemical and molecular parameters of signaling pathways linked with hyperinsulinemia and hyperlipidemia. Finally, using methods of quantitative polymerase chain reaction (qPCR) and western blot analysis, we quantified expression of 45 genes related to lipid biosynthesis and metabolism in the livers of male and female SHROB rats. Results We show that all SHROB rats developed hepatic steatosis that was accompanied by enhanced expression of SREBP1, SREBP2, ACC1, and FASN proteins. The livers of male rats also elicited higher induction of Pparg, Ppara, Slc2a4, Atox1, Skp1, Angptl3, and Pnpla3 mRNAs. In contrast, the livers of female SHROB rats elicited constitutively higher levels of phosphorylated JNK and AMPK and enhanced expression of Cd36. Conclusion Based on these data, we conclude that the severity of hepatic steatosis in male and female SHROB rats was mainly driven by increased de novo lipogenesis. Moreover, male and female SHROB rats also elicited differential severity of hepatic steatosis that was coupled with sex-specific differences in fatty acid transport and esterification. Electronic supplementary material The online version of this article (10.1186/s13293-018-0202-x) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Changes in the activity of some metabolic enzymes in the heart of SHR rat incurred by transgenic expression of CD36. J Physiol Biochem 2018; 74:479-489. [PMID: 29916179 DOI: 10.1007/s13105-018-0641-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/12/2018] [Indexed: 01/12/2023]
Abstract
Hypertension, dyslipidemia, and insulin resistance in the spontaneously hypertensive rat (SHR) can be alleviated by rescuing CD36 fatty acid translocase. The present study investigated whether transgenic rescue of CD36 in SHR could affect mitochondrial function and activity of selected metabolic enzymes in the heart. These analyses were conducted on ventricular preparations derived from SHR and from transgenic strain SHR-Cd36 that expresses a functional wild-type CD36. Our respirometric measurements revealed that mitochondria isolated from the left ventricles exhibited two times higher respiratory activity than those isolated from the right ventricles. Whereas, we did not observe any significant changes in functioning of the mitochondrial respiratory system between both rat strains, enzyme activities of total hexokinase, and both mitochondrial and total malate dehydrogenase were markedly decreased in the left ventricles of transgenic rats, compared to SHR. We also detected downregulated expression of the succinate dehydrogenase subunit SdhB (complex II) and 70 kDa peroxisomal membrane protein in the left ventricles of SHR-Cd36. These data indicate that CD36 may affect in a unique fashion metabolic substrate flexibility of the left and right ventricles.
Collapse
|
6
|
Cirrik S, Schmid-Schönbein GW. IGF-1 receptor cleavage in hypertension. Hypertens Res 2018; 41:406-413. [PMID: 29556095 PMCID: PMC8075889 DOI: 10.1038/s41440-018-0023-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022]
Abstract
Increased protease activity causes receptor dysfunction due to extracellular cleavage of different membrane receptors in hypertension. The vasodilatory effects of insulin-like growth factor-1 (IGF-1) are decreased in hypertension. Therefore, in the present study the association of an enhanced protease activity and IGF-1 receptor cleavage was investigated using the spontaneously hypertensive rats (SHRs) and their normotensive Wistar Kyoto (WKY) controls (n = 4). Matrix metalloproteinase (MMP) activities were determined using gelatin zymography on plasma and different tissue samples. WKY aorta rings were incubated in WKY or SHR plasma with or without MMP inhibitors, and immunohistochemistry was used to quantify the densities of the alpha and beta IGF-1 receptor (IGF-1R) subunits and to determine receptor cleavage. The pAkt and peNOS levels in the aorta were investigated using immunoblotting as a measure of IGF-IR function. Increased MMP-2 and MMP-9 activities were detected in plasma and peripheral tissues of SHRs. IGF-1R beta labeling was similar in both groups without plasma incubation, but the fraction of immunolabeled area for IGF-1R alpha was lower in the endothelial layer of the SHR aorta (p < 0.05). A 24-h incubation of WKY aorta with SHR plasma did not affect the IGF-1R beta labeling density, but reduced the IGF-1R alpha labeling density in the endothelium (p < 0.05). MMP inhibitors prevented this decrease (p < 0.01). Western blot analyses revealed that the pAkt and peNOS levels under IGF-1-stimulated and -unstimulated conditions were lower in SHRs (p < 0.05). A reduced IGF-1 cellular response in the aorta was associated with the decrease in the IGF-1R alpha subunit in the SHR hypertension model. Our results indicate that MMP-dependent receptor cleavage contributed to the reduced IGF-1 response in SHRs.
Collapse
Affiliation(s)
- Selma Cirrik
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey.
| | | |
Collapse
|
7
|
Dehn S, Thorp EB. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair. FASEB J 2017; 32:254-264. [PMID: 28860151 DOI: 10.1096/fj.201700450r] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Phagocytosis after myocardial infarction (MI) is a prerequisite to cardiac repair. Recruited monocytes clear necrotic cardiomyocytes and differentiate into cardiac macrophages. Some studies have linked apoptotic cell receptors on cardiac macrophages to tissue repair; however, the contribution of precursor monocyte phagocytic receptors, which are the first to interact with the cardiac parenchyma, is unclear. The scavenger receptor cluster of differentiation (CD)36 protein was detected on cardiac Ly6cHI monocytes, and bone marrow-derived Cd36 was essential for both early phagocytosis of dying cardiomyocytes and for smaller infarct sizes in female and male mice after permanent coronary ligation. Cd36 deficiency led to reduced expression of phagocytosis receptor Mertk and nuclear receptor Nr4a1 in cardiac macrophages, the latter previously shown to be required for phagocyte survival. Nr4a1 was required for phagocytosis-induced Mertk expression, and Nr4a1 protein directly bound to Mertk gene regulatory elements. To test the overall contribution of the Cd36-Mertk axis, MI was induced in Cd36-/- Mertk-/- double-knockout mice and led to increases in myocardial rupture. These data implicate monocyte CD36 in the mitigation of early infarct size and transition to Mertk-dependent macrophage function. Increased myocardial rupture in the absence of both Cd36 and Mertk underscore the physiologic significance of phagocytosis during tissue injury.-Dehn, S., Thorp, E. B. Myeloid receptor CD36 is required for early phagocytosis of myocardial infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair.
Collapse
Affiliation(s)
- Shirley Dehn
- Department of Pathology and.,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B Thorp
- Department of Pathology and .,Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
8
|
Sakamuri SSVP, Watts R, Takawale A, Wang X, Hernandez-Anzaldo S, Bahitham W, Fernandez-Patron C, Lehner R, Kassiri Z. Absence of Tissue Inhibitor of Metalloproteinase-4 (TIMP4) ameliorates high fat diet-induced obesity in mice due to defective lipid absorption. Sci Rep 2017; 7:6210. [PMID: 28740132 PMCID: PMC5524827 DOI: 10.1038/s41598-017-05951-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/07/2017] [Indexed: 01/09/2023] Open
Abstract
Tissue inhibitor of metalloproteases (TIMPs) are inhibitors of matrix metalloproteinases (MMPs) that regulate tissue extracellular matrix (ECM) turnover. TIMP4 is highly expressed in adipose tissue, its levels are further elevated following high-fat diet, but its role in obesity is unknown. Eight-week old wild-type (WT) and Timp4-knockout (Timp4 -/-) mice received chow or high fat diet (HFD) for twelve weeks. Timp4 -/- mice exhibited a higher food intake but lower body fat gain. Adipose tissue of Timp4 -/- -HFD mice showed reduced hypertrophy and fibrosis compared to WT-HFD mice. Timp4 -/- -HFD mice were also protected from HFD-induced liver and skeletal muscle triglyceride accumulation and dyslipidemia. Timp4 -/--HFD mice exhibited reduced basic metabolic rate and energy expenditure, but increased respiratory exchange ratio. Increased free fatty acid excretion was detected in Timp4 -/--HFD compared to WT-HFD mice. CD36 protein, the major fatty acid transporter in the small intestine, increased with HFD in WT but not in Timp4 -/- mice, despite a similar rise in Cd36 mRNA in both genotypes. Consistently, HFD increased enterocyte lipid content only in WT but not in Timp4 -/- mice. Our study reveals that absence of TIMP4 can impair lipid absorption and the high fat diet-induced obesity in mice possibly by regulating the proteolytic processing of CD36 protein in the intestinal enterocytes.
Collapse
Affiliation(s)
- Siva S V P Sakamuri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abhijit Takawale
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiuhua Wang
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Samuel Hernandez-Anzaldo
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wesam Bahitham
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Mazor R, Schmid-Schönbein GW. Proteolytic receptor cleavage in the pathogenesis of blood rheology and co-morbidities in metabolic syndrome. Early forms of autodigestion. Biorheology 2016; 52:337-52. [PMID: 26600265 DOI: 10.3233/bir-15045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abnormal blood rheological properties seldom occur in isolation and instead are accompanied by other complications, often designated as co-morbidities. In the metabolic syndrome with complications like hypertension, diabetes and lack of normal microvascular blood flow, the underlying molecular mechanisms that simultaneously lead to elevated blood pressure and diabetes as well as abnormal microvascular rheology and other cell dysfunctions have remained largely unknown. In this review, we propose a new hypothesis for the origin of abnormal cell functions as well as multiple co-morbidities. Utilizing experimental models for the metabolic disease with diverse co-morbidities we summarize evidence for the presence of an uncontrolled extracellular proteolytic activity that causes ectodomain receptor cleavage and loss of their associated cell function. We summarize evidence for unchecked degrading proteinase activity, e.g. due to matrix metalloproteases, in patients with hypertension, Type II diabetes and obesity, in addition to evidence for receptor cleavage in the form of receptor fragments and decreased extracellular membrane expression levels. The evidence suggest that a shift in blood rheological properties and other co-morbidities may in fact be derived from a common mechanism that is due to uncontrolled proteolytic activity, i.e. an early form of autodigestion. Identification of the particular proteases involved and the mechanisms of their activation may open the door to treatment that simultaneously targets multiple co-morbidities in the metabolic syndrome.
Collapse
Affiliation(s)
- Rafi Mazor
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Geert W Schmid-Schönbein
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|