1
|
Gao J, Wang C, Zhang J, Shawuti Z, Wang S, Ma C, Wang J. CircZNF609 inhibits miR-150-5p to promote high glucose-induced damage to retinal microvascular endothelial cells. Mol Cell Endocrinol 2024; 590:112261. [PMID: 38679361 DOI: 10.1016/j.mce.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Hyperglycemia is a key contributor to diabetic macrovascular and ocular complications. It triggers a cascade of cellular damage, particularly in the retinal microvascular endothelial cells (RMECs). However, the underlying molecular mechanisms remain only partially understood. This study hypothesizes that CircZNF609 plays a pivotal role in mediating high glucose-induced damage in RMECs by modulating miR-150-5p and its downstream target genes, thereby affecting cellular survival, apoptosis, and oxidative stress. Gene expression datasets (GSE193974 and GSE160308) and clinical samples were used to investigate the expression levels of CircZNF609 and its interaction with miR-150-5p in the context of diabetic retinopathy (DR). Our results demonstrate that CircZNF609 is upregulated in both peripheral blood stem cells from DR patients and high glucose-stimulated hRMECs. Functional experiments reveal that silencing CircZNF609 improves cell viability, reduces apoptosis, inhibits tube formation, and modulates oxidative stress markers, whereas CircZNF609 overexpression exacerbates these effects. Moreover, miR-150-5p, a microRNA, was found to be negatively regulated by CircZNF609 and downregulated in DR. Its overexpression mitigates high glucose-induced cell injury. Our findings suggest a novel mechanism whereby CircZNF609 exacerbates high glucose-induced endothelial cell damage by sponging miR-150-5p, implicating the CircZNF609/miR-150-5p axis as a potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Chenfei Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Jie Zhang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zulifeiya Shawuti
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Siyao Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Cunhua Ma
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Juan Wang
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
2
|
Chen L, Wang J, Ren Y, Ma Y, Liu J, Jiang H, Liu C. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155382. [PMID: 38382280 DOI: 10.1016/j.phymed.2024.155382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetes is a metabolic disorder characterized by chronic hyperglycaemia. Chronic metabolic abnormalities and long-term hyperglycaemia may result in a wide range of acute and chronic consequences. Previous studies have demonstrated that artesunate(ART) has antidiabetic, anti-inflammatory, antiatherosclerotic, and other beneficial effects, but the specific regulatory mechanism is not completely clear. AIM This study investigated the effects of ART on metabolic disorders in type 2 diabetes mellitus (T2DM) model db/db mice and explored the underlying mechanisms involved. METHODS C57BL/KsJ-db/db mice were used to identify the targets and molecular mechanism of ART. Metabolomic methods were used to evaluate the efficacy of ART in improving T2DM-related metabolic disorders. Network pharmacology and transcriptomic sequencing were used to analyse the targets and pathways of ART in T2DM. Finally, molecular biology experiments were performed to verify the key targets and pathways selected by network pharmacology and transcriptomic analyses. RESULTS After a 7-week ART intervention (160 mg/kg), the glucose and lipid metabolism levels of the db/db mice improved. Additionally, the oxidative stress indices, namely, the MDA and SOD levels, significantly improved (p<0.01). Linoleic acid and glycerophospholipid metabolism, amino acid metabolism, bile acid synthesis, and purine metabolism disorders in db/db mice were partially corrected after ART treatment. Network pharmacology analysis identified important targets of ART for the treatment of metabolic disorders in T2DM . These targets are involved in key signalling pathways, including the highest scores observed for the PI3K/Akt signalling pathway. Transcriptomic analysis revealed that ART could activate the MAPK signalling pathway and two key gene targets, HGK and GADD45. Immunoblotting revealed that ART increases p-PI3K, p-AKT, Glut2, and IRS1 protein expression and suppresses the phosphorylation of p38, ERK1/2, and JNK, returning HGK and GADD45 to their preartesunate levels. CONCLUSION Treatment of db/db mice with 160 mg/kg ART for 7 weeks significantly reduced fasting blood glucose and lipid levels. It also improved metabolic imbalances in amino acids, lipids, purines, and bile acids, thereby improving metabolic disorders. These effects are achieved by activating the PI3K/AKT pathway and inhibiting the MAPK pathway, thus demonstrating the efficacy of the drug.
Collapse
Affiliation(s)
- Lulu Chen
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jialin Wang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yanshuang Ren
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yujin Ma
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongwei Jiang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
3
|
Mao Y, Pan S, Song Y, Wang W, Li N, Feng B, Zhang J. Exploring the mechanism of Jingshen Xiaoke decoction in treating T2DM mice based on network pharmacology and molecular docking. Technol Health Care 2024; 32:163-179. [PMID: 37092194 DOI: 10.3233/thc-220630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Jingshen Xiaoke decoction (JS) was prepared by studying the classic prescriptions of famous scholars in the past dynasties to prevent and treat diabetes. The related mechanism of JS against hyperlipidemia has yet to be revealed. OBJECTIVE To investigate the mechanism of action of JS in treating diabetes mellitus by using bioinformatics methods. METHODS A database was used to search the active ingredients and targets of the JS and targets for type 2 diabetes mellitus (T2DM). The protein interaction between the intersection targets, and the constructed the PPI network diagram was analyzed using the STRING database. Furthermore, the gene annotation tool DAVID was used to enrich the intersecting targets for the Gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway. Finally, Maestro software was used for molecular docking to verify the binding ability of the active ingredients to the core target genes. RESULTS A total of 45 active ingredients in JS were screened out corresponding to 239 effective targets, of which 64 targets were potential targets for treating T2DM. The analysis of PPI network diagram analysis revealed that the ingredients' active components are quercetin, β-sitosterol, stigmasterol, luteolin, and 7-Methoxy-2-methyl isoflavone. GO functional enrichment analysis indicated 186 biological processes (BP), 23 molecular functions (MF) and 13 cellular components (CC). KEGG pathway enrichment analysis revealed the enrichment of 59 signal pathways. The molecular docking results demonstrated that the active ingredients and core targets had a good docking affinity with a binding activity less than -7 kcal/mol. Finally, the western blotting illustrated that JS could up-regulate the liver PI3K/AKT-signaling pathway. CONCLUSION JS can regulate glucolipid metabolism, reduce the inflammatory response, improve insulin resistance and modulate the immune response through PI3K/AKT signaling pathway treating of T2DM and its complications effects.
Collapse
Affiliation(s)
- Yongpo Mao
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- Chongqing Three Gorges Medical College, Chongqing, China
- School of Early Childhood Development, Chongqing Preschool Education College, China
| | - Shengwang Pan
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yiming Song
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chinese Medicine Health Application Technology Promotion Center in Chongqing Three Gorges Reservoir Area, Chongqing, China
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chinese Medicine Health Application Technology Promotion Center in Chongqing Three Gorges Reservoir Area, Chongqing, China
| | - Binbin Feng
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chinese Medicine Health Application Technology Promotion Center in Chongqing Three Gorges Reservoir Area, Chongqing, China
| | - Jianhai Zhang
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chinese Medicine Health Application Technology Promotion Center in Chongqing Three Gorges Reservoir Area, Chongqing, China
| |
Collapse
|
4
|
Li Y, Song Y, Liang Y. AREL1 resists the apoptosis induced by TGF-β by inhibiting SMAC in vascular endothelial cells. J Biochem Mol Toxicol 2023; 37:e23439. [PMID: 37522329 DOI: 10.1002/jbt.23439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/27/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Abnormal apoptosis of vascular endothelial cells is an important feature of arteriosclerosis (AS). Here, we induced apoptosis in human umbilical vein endothelial cells (HUVECs) using transforming growth factor-β (TGF-β), and investigated the role of antiapoptotic E3 ubiquitin ligase (AREL1) in the apoptosis of vascular endothelial cells. We proved that AREL1 is downregulated in TGF-β treated HUVECs. The overexpression of AREL1 inhibits the activation of Caspase-3 and Caspase-9 and attenuates cell apoptosis induced by TGF-β. According to the result of coimmunoprecipitation, AREL1 interacts with the proapoptotic proteins the second mitochondria-derived activator of caspases (SMAC) in TGF-β treated HUVECs. In addition, miR-320b inhibits the expression of AREL1, and the overexpression of AREL1 attenuates the apoptosis induced by miR-320b mimics in HUVECs. In conclusion, AREL1 is downregulated by miR-320b. AREL1 overexpression inhibits TGF-β induced apoptosis through downregulating SMAC in vascular endothelial cells. Our study explores pathogenesis regulation mechanism and new biological therapeutic targets for vascular disease.
Collapse
Affiliation(s)
- Yun Li
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Yunhong Song
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Yulian Liang
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Yin XY, Liu Y, Lu ZM, Pang T, Cui HT, Xue XC, Fang GE, Luo TH. LncRNA NEAT-2 regulate the function of endothelial progenitor cells in experimental Sepsis model. Mol Biol Rep 2023; 50:6643-6654. [PMID: 37358763 DOI: 10.1007/s11033-023-08522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/12/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Sepsis is a life-threatening disease with a limited effectiveness and the potential mechanism remains unclear. LncRNA NEAT-2 is reported to be involved in the regulation of cardiovascular disease. This study aimed to investigate the function of NEAT-2 in sepsis. METHODS We built sepsis animal model with Male Balb/C mice induced by cecal ligation and puncture (CLP). A total of 54 mice were randomly assigned into eight groups: sham operation group (n = 18), CLP group (n = 18), CLP plus si-control group (n = 3), CLP plus si-NEAT2 group (n = 3), CLP plus mimic control group (n = 3), CLP plus miR-320 group (n = 3), CLP plus normal saline group (n = 3), and normal control group (n = 3). The number of peripheral endothelial progenitor cells (EPCs), the expression level of NEAT-2 and miR-320 were detected during progression of sepsis, as well as the number of peripheral EPCs and level of TNF-α, IL-6, VEGF, ALT, AST and Cr. In addition, the function of EPCs was evaluated after NEAT-2 knockdown and miR-320 overexpression in vitro. RESULTS The number of circulating EPCs increased significantly in sepsis. NEAT-2 expression was significantly increased in the progress of sepsis, accompanied with miR-320 downregulated. NEAT-2 knockdown and miR-320 overexpression attenuated hepatorenal function and increased cytokines in sepsis. Moreover, NEAT-2 knockdown and miR-320 overexpression decreased the proliferation, migration and angiogenesis of endothelial progenitor cells in vitro. CONCLUSIONS LncRNA-NEAT2 regulated the number and function of endothelial progenitor cells via miR-320 in sepsis, which may contribute to the development of novel potential clinical therapy for sepsis.
Collapse
Affiliation(s)
- Xiao-Yi Yin
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Hepatobiliary Pancreatic Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tao Pang
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hang-Tian Cui
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xu-Chao Xue
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Guo-En Fang
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tian-Hang Luo
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
7
|
Xu H, Wu J, Wang S, Xu L, Liu P, Shi Y, Wu S, Deng L, Chen X. Network pharmacology and in vivo experiments reveal the pharmacological effects and molecular mechanisms of Simiao Powder in prevention and treatment for gout. BMC Complement Med Ther 2022; 22:152. [PMID: 35672755 PMCID: PMC9175488 DOI: 10.1186/s12906-022-03622-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gout is a common disease with high incidence due to unhealthy diet and living habits. Simiao Powder, as a classic formula consisted of four common herbs, has been widely used in clinical practice since ancient times to prevent and treat gout. However, the pharmacological mechanism of Simiao Powder is still unclear. METHODS Based on network pharmacology, Simiao Powder active compounds were identified in TCMSP, ETCM and BATMAN database, used to establish a network of interaction between potential targets of Simiao Powder and known therapeutic targets of gout. Subsequently, the key potential targets are being used for protein-protein interaction, GO enrichment analysis and KEGG pathway enrichment analysis through several authoritative open databases. Molecular docking through AutoDockTools software can verify interaction between molecules. Finally, to validate the predicted results, in vivo experiments based on hyperuricemic-gout mice model were designed and treated with Simiao powder and allopurinol. Serum levels of uric acid (UA), creatinine (Cr), blood urea nitrogen (BUN) and xanthine oxidase (XOD) were determined using a customized assay kit while the expression of PPAR-γ, PTGS1, IL-6 and Bcl2 mRNA were analyzed through qRT-PCR. RESULTS Disease-target-compound network was visualized basing on the 20 bioactive compounds and the 19 potential targets using Cytoscape software. The results of PPI analysis, GO enrichment and KEGG pathway enrichment analysis indicate that the potential mechanism of Simiao Powder in treating gout may be achieved by regulating immune and inflammatory reactions, improving metabolism and endocrine. The results of molecular docking show that most of the targets and components have good binding activity. In vivo experiments revealed that Simiao powder can decreased serum UA and XOD levels in hyperuricemic-gout mice, and improved renal function. Furthermore, Simiao powder certainly regulates the expression of PPAR-γ, PTGS1, IL-6 and Bcl2 mRNA in ankle tissue in hyperuricemic-gout mice. CONCLUSION Collectively, this research predicted a multiple compounds, targets, and pathways model mechanism of Simiao Powder in the prevention and treatment of gout, providing new ideas and methods for in-depth research, via vivo experiments.
Collapse
Affiliation(s)
- Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Jialin Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Shiqi Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Lu Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
8
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Zheng H, Yu Z, Wang H, Liu H, Chen X. MicroRNA-195-5p facilitates endothelial dysfunction by inhibiting vascular endothelial growth factor A in gestational diabetes mellitus. Reprod Biol 2022; 22:100605. [PMID: 35078033 DOI: 10.1016/j.repbio.2022.100605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is a common disorder during pregnancy associated with endothelial dysfunction in the placental vasculature. MicroRNAs (miRNAs), which are short noncoding RNAs that modulate post-transcriptional gene expression, affect GDM progression. MiR-195-5p was reported to be a putative biomarker for GDM diagnosis, whose expression was markedly elevated in serum of GDM patients. Therefore, our study intended to explore whether miR-195-5p regulates endothelial cell dysfunction in GDM. Human placental microvascular endothelial cells (hPMECs) were treated with high concentration of glucose to establish an in vitro GDM model. The apoptosis, proliferation and angiogenesis of hPMECs were detected by flow cytometry analysis, CCK-8 assay and tube formation assay. The binding between vascular endothelial growth factor A (VEGFA) and miR-195-5p was verified by luciferase reporter assay. GDM mouse model was established by intraperitoneal injection of streptozocin. Cell apoptosis and the pathological changes in GDM mouse placenta tissues were evaluated by TUNEL staining and HE staining. Gene expression was detected by RT-qPCR. Protein levels were evaluated by western blotting. In this study, miR-195-5p knockdown promoted the proliferation and angiogenesis as well as inhibited the apoptosis of HG-treated hPMECs. MiR-195-5p targeted VEGFA, whose expression was downregulated in HG-treated hPMECs. VEGFA silencing antagonized the influence of miR-195-5p knockdown on the phenotypes of HG-treated hPMECs. Additionally, miR-195-5p inhibition decelerated cell apoptosis and improved pathological changes in GDM mouse placenta tissues. MiR-195-5p level was negatively correlated to VEGFA level in GDM mouse placenta tissues. Overall, miR-195-5p facilitates the endothelial cell dysfunction by inhibiting VEGFA in GDM.
Collapse
Affiliation(s)
- Haoyu Zheng
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Zhou Yu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Hairong Wang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Hongxue Liu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Xiaoqin Chen
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China.
| |
Collapse
|
10
|
Luís C, Baylina P, Soares R, Fernandes R. Metabolic Dysfunction Biomarkers as Predictors of Early Diabetes. Biomolecules 2021; 11:1589. [PMID: 34827587 PMCID: PMC8615896 DOI: 10.3390/biom11111589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
During the pathophysiological course of type 2 diabetes (T2D), several metabolic imbalances occur. There is increasing evidence that metabolic dysfunction far precedes clinical manifestations. Thus, knowing and understanding metabolic imbalances is crucial to unraveling new strategies and molecules (biomarkers) for the early-stage prediction of the disease's non-clinical phase. Lifestyle interventions must be made with considerable involvement of clinicians, and it should be considered that not all patients will respond in the same manner. Individuals with a high risk of diabetic progression will present compensatory metabolic mechanisms, translated into metabolic biomarkers that will therefore show potential predictive value to differentiate between progressors/non-progressors in T2D. Specific novel biomarkers are being proposed to entrap prediabetes and target progressors to achieve better outcomes. This study provides a review of the latest relevant biomarkers in prediabetes. A search for articles published between 2011 and 2021 was conducted; duplicates were removed, and inclusion criteria were applied. From the 29 studies considered, a survey of the most cited (relevant) biomarkers was conducted and further discussed in the two main identified fields: metabolomics, and miRNA studies.
Collapse
Affiliation(s)
- Carla Luís
- FMUP–Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
| | - Pilar Baylina
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
- IPP–Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Raquel Soares
- FMUP–Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biochemistry Unit, Department of Biochemistry, FMUP, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal
| | - Rúben Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto Polytechnic, 4200-375 Porto, Portugal;
- IPP–Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
11
|
Chen Y, Fan Z, Wu Q. Dexmedetomidine improves oxygen-glucose deprivation/reoxygenation (OGD/R) -induced neurological injury through regulating SNHG11/miR-324-3p/VEGFA axis. Bioengineered 2021; 12:4794-4804. [PMID: 34334080 PMCID: PMC8806500 DOI: 10.1080/21655979.2021.1957071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dexmedetomidine (Dex) has been reported to exhibit neuroprotective effects through various regulatory mechanisms. This study aims to investigate the role and molecular mechanism of SNHG11 in Dex-mediated neuroprotection. The ischemic stroke (IS) model was established in vivo by middle cerebral artery occlusion (MCAO) and in vitro by oxygen-glucose deprivation and reperfusion (OGD/R)-treated SH-SY5Y. SNHG11 was highly expressed after OGD/R, and Dex improved OGD/R-induced neurological injury. Additionally, Dex reversed the effects of SNHG11 on OGD/R-induced neurological injury. Furthermore, we found that SNHG11 upregulated vascular endothelial growth factor A (VEGFA) expression by targeting miR-324-3p. Through rescue assays, it was confirmed that SNHG11 regulated OGD/R-induced neurological injury through increasing VEGFA expression. At last, Dex was also discovered to improve neurological injury through regulating SNHG11 in the rat model. In conclusion, our work demonstrated that Dex improved OGD/R-induced neurological injury via SNHG11/miR-324-3p/VEGFA axis. These findings may offer a novel therapeutic strategy for IS treatment.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhiying Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingwei Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Jo S, Xu G, Jing G, Chen J, Shalev A. Human Glucagon Expression Is under the Control of miR-320a. Endocrinology 2021; 162:6052618. [PMID: 33367814 PMCID: PMC7814302 DOI: 10.1210/endocr/bqaa238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 11/19/2022]
Abstract
Increased glucagon is a hallmark of diabetes and leads to worsening of the hyperglycemia, but the molecular mechanisms causing it are still unknown. We therefore investigated the possibility that microRNAs might be involved in the regulation of glucagon. Indeed, analysis of the glucagon 3' untranslated region (UTR) revealed potential binding sites for miR-320a, and using luciferase reporter assays we found that miR-320a directly targets the 3' UTRs of human and rodent glucagon. In addition, endogenous glucagon mRNA and protein expression as well as glucagon secretion were reduced in response to miR-320a overexpression, whereas inhibition of miR-320a upregulated glucagon expression. Interestingly, miR-320a expression was decreased by high glucose, and this was associated with an increase in glucagon expression in human islets and mouse αTC1-6 cells. Moreover, miR-320a overexpression completely blunted these effects. Importantly, miR-320a was also significantly downregulated in human islets of subjects with type 2 diabetes and this was accompanied by increased glucagon expression. Thus, our data suggest that glucose-induced downregulation of miR-320a may contribute to the paradoxical increase in glucagon observed in type 2 diabetes and reveal for the first time that glucagon expression is under the control by a microRNA providing novel insight into the abnormal regulation of glucagon in diabetes.
Collapse
Affiliation(s)
- SeongHo Jo
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guanlan Xu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gu Jing
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Junqin Chen
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anath Shalev
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
- Correspondence: Anath Shalev, MD, Professor and Director, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, SHELBY Bldg 1206, Birmingham, AL 35294-2182, USA.
| |
Collapse
|
13
|
Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans 2021; 49:313-325. [PMID: 33522573 DOI: 10.1042/bst20200611] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
Collapse
|
14
|
Du H, Zhao Y, Yin Z, Wang DW, Chen C. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. Int J Biol Sci 2021; 17:402-416. [PMID: 33613101 PMCID: PMC7893589 DOI: 10.7150/ijbs.53419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose and lipids are important nutrients that provide the majority of energy for each organ to maintain homeostasis of the body. With the continuous improvement in living standards, the incidence of metabolic disorder-associated diseases, such as diabetes, hyperlipidemia, and atherosclerosis, is increasing worldwide. Among them, diabetes, which could be induced by both glucose and lipid metabolic disorders, is one of the five diseases with the highest incidence and mortality worldwide. However, the detailed molecular mechanisms underlying glucose and lipid metabolism disorders and target-organ damage are still not fully defined. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs, which usually affect their target mRNAs in the cytoplasm by post-transcriptional regulation. Previously, we have found that miR-320 contributed to glucose and lipid metabolism via different signaling pathways. Most importantly, we identified that nuclear miR-320 mediated diabetes-induced cardiac dysfunction by activating the transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Here, we reviewed the roles of miR-320 in glucose and lipid metabolism and target-organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|