1
|
de Melo Bisneto AV, de Paiva FEA, Fernandes AS, Roma RR, Silva LS, Chiesi GV, Franchi LP, Cardoso CG, Teixeira CS, Chen-Chen L. Dioclea violacea lectin exerts pro-angiogenic effects by increasing VEGF and TNF-α levels via carbohydrate recognition domain. Cytokine 2025; 192:156966. [PMID: 40424746 DOI: 10.1016/j.cyto.2025.156966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/13/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Due to their interesting biological activities, a mannose-binding lectin isolated from Dioclea violacea seeds, known as DvL have attracted considerable attention. In this study, we performed macroscopic, histologic, and immunohistochemical analysis on chicken embryo chorioallantoic membranes (CAM) to investigate the effects of DvL on the angiogenic process. Data showed a potential angiogenic effect of DvL at the highest concentrations tested (50 and 100 μg/mL). This effect was confirmed through increased neovascularization, inflammatory cells, and fibroblasts in histological analysis of the CAM. In addition, the immunohistochemistry of CAM showed that DvL induced secretion of TNF-α and VEGF, important cytokines involved in angiogenesis. Therefore, increased neovascularization may result from a pro-inflammatory response through VEGF and TNF-α secretion. In contrast, the DvL effects on the angiogenic process and the TNF-α and VEGF secretion were significantly reduced by co-incubation with mannose. Thus, protein-carbohydrate interactions between DvL and cell membrane glycans are likely the main events involved in this effect. Therefore, our results demonstrated that DvL is a potent angiogenic agent, suggesting its potential application as a prototype molecule for developing new drugs with healing properties.
Collapse
Affiliation(s)
- Abel Vieira de Melo Bisneto
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil; Estacio de Goiás University Center, 74063-010, Goiânia, Brazil
| | - Felipe Eduardo Alves de Paiva
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil
| | - Amanda Silva Fernandes
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil
| | - Renato Rodrigues Roma
- Center for Agrarian Sciences and Biodiversity, Federal University of Cariri, 63130-025, Crato, Brazil
| | - Luana Santos Silva
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil
| | - Giovana Valsani Chiesi
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil
| | - Leonardo Pereira Franchi
- Department of Biochemistry and Molecular Biology of Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil
| | - Clever Gomes Cardoso
- Department of Morphology of Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil
| | - Claudener Souza Teixeira
- Center for Agrarian Sciences and Biodiversity, Federal University of Cariri, 63130-025, Crato, Brazil
| | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900, Goiânia, Brazil.
| |
Collapse
|
2
|
Araújo GSD, Moura AF, Barros AB, Moraes MO, Pessoa C, Perez CN, Castro MRCD, Ribeiro FDOS, Silva DAD, Sousa PSDA, Rocha JA, Marinho Filho JDB, Araujo AJ. Sulfonamide-chalcone hybrid compound suppresses cellular adhesion and migration: Experimental and computational insight. Chem Biol Interact 2024; 398:111115. [PMID: 38908811 DOI: 10.1016/j.cbi.2024.111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
In the present study, the effect of sulfonamide-chalcone 185 (SSC185) was investigated against B16-F10 metastatic melanoma cells aggressive actions, besides migration and adhesion processes, by in silico and in vitro assays. In silico studies were used to characterize the pharmacokinetic profile and possible targets of SSC185, using the pkCSM web server, and docking simulations with AutoDock Tools. Furthermore, the antimetastatic effect of SSC185 was investigated by in vitro experiments using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), colony, scratch, and cell adhesion assays, and atomic force microscopy (AFM). The molecular docking results show better affinity of SSC185 with the metalloproteinases-2 (MMP-2) and α5β1 integrin. SSC185 effectively restricts the formation of colonies, migration, and adhesion of B16-F10 metastatic melanoma cells. Through the AFM images changes in cells morphology was identified, with a decrease in the filopodia and increase in the average cellular roughness. The results obtained demonstrate the potential of this molecule in inhibit the primordial steps for metastasis, which is responsible for a worse prognosis of late stage cancer, being the main cause of morbidity among cancer patients.
Collapse
Affiliation(s)
- Gisele Santos de Araújo
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Andrea Felinto Moura
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Ayslan Batista Barros
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Manoel Odorico Moraes
- Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Claudia Pessoa
- Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caridad Noda Perez
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Fábio de Oliveira Silva Ribeiro
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia (BIOTEC), Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Durcilene Alves da Silva
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia (BIOTEC), Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Paulo Sérgio de Araújo Sousa
- Grupo de Pesquisa em Química Medicinal e Biotecnologia, QUIMEBIO, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Jefferson Almeida Rocha
- Grupo de Pesquisa em Química Medicinal e Biotecnologia, QUIMEBIO, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | | | - Ana Jérsia Araujo
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil.
| |
Collapse
|
3
|
Fernandes AS, de Melo Bisneto AV, Silva LS, Bailão EFLC, Cardoso CG, Carneiro CC, da Costa Santos S, Chen-Chen L. Pedunculagin and tellimagrandin-I stimulate inflammation and angiogenesis and upregulate vascular endothelial growth factor and tumor necrosis factor-alpha in vivo. Microvasc Res 2024; 151:104615. [PMID: 37797833 DOI: 10.1016/j.mvr.2023.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Pedunculagin (PD) and tellimagrandin-I (TL), isolated from Myrciaria cauliflora seeds and Eucaliptus microcorys leaves, respectively, have attracted great attention owing to their relevant biological activities, such as antitumor, antioxidant, and hepatoprotective activities. This study investigated the angiogenic potential of PD and TL using a chick embryo chorioallantoic membrane (CAM) assay. Using the CAM assay, our results showed that both PD and TL promoted a significant increase in the number and caliber of blood vessels, the thickness of the CAM, and the presence of fibroblasts and inflammatory cells. Moreover, an increase of tumor necrosis factor-α and vascular endothelial growth factor was observed in the CAM treated with PD and TL, indicating the induction of angiogenic factors. Thus, the remarkable profile of PD and TL in inducing angiogenesis opens up new perspectives for their potential utilization in different therapeutic approaches involving neovascularization.
Collapse
Affiliation(s)
- Amanda Silva Fernandes
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Abel Vieira de Melo Bisneto
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luana Santos Silva
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Clever Gomes Cardoso
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Cristiene Costa Carneiro
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
4
|
Shaldam M, Tawfik H, Elmansi H, Belal F, Yamaguchi K, Sugiura M, Magdy G. Synthesis, crystallographic, DNA binding, and molecular docking/dynamic studies of a privileged chalcone-sulfonamide hybrid scaffold as a promising anticancer agent. J Biomol Struct Dyn 2023; 41:8876-8890. [PMID: 36310097 DOI: 10.1080/07391102.2022.2138551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
Abstract
In the present study, a drug-like molecular hybrid structure between chalcone and sulfonamide moieties was synthesized and characterized. The structural peculiarities of the synthesized hybrid were further verified by means of single crystal X-ray crystallography. Furthermore, its biological activity as an anticancer agent was evaluated. The synthesized model of chalcone-sulfonamide hybrid 3 was found to have potent anticancer properties against the studied cancer cell lines. Hence, the in vitro binding interaction of hybrid 3 with Calf thymus DNA (CT-DNA) was studied at a simulated physiological pH to confirm its anticancer activity for the first time. This was investigated by applying different spectroscopic techniques, ionic strength measurements, viscosity measurements, thermodynamics, molecular dynamic simulation and molecular docking studies. The obtained results showed a clear binding interaction between hybrid 3 and CT-DNA with a moderate affinity via a minor groove binding mechanism. The binding constant (Kb) at 298 K calculated from the Benesi-Hildebrand equation was found to be 3.49 × 104 M-1. The entropy and enthalpy changes (ΔS0 and ΔH0) were 204.65 J mol-1 K-1 and 35.08 KJ mol-1, respectively, indicating that hydrophobic interactions constituted the major binding forces. The results obtained from molecular docking and dynamic simulation studies confirmed the minor groove binding interaction and the stability of the formed complex. This study can contribute to further understanding of the molecular mechanism of hybrid 3 as a potential antitumor agent and can also guide future clinical and pharmacological studies for rational drug design with enhanced or more selective activity and greater efficacy.[Figure: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Haytham Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
5
|
Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem Biol Interact 2023; 369:110297. [PMID: 36496109 DOI: 10.1016/j.cbi.2022.110297] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The need for innovative anticancer treatments with high effectiveness and low toxicity is urgent due to the development of malignancies that are resistant to chemotherapeutic agents and the poor specificity of existing anticancer treatments. Chalcones are 1,3-diaryl-2-propen-1-ones, which are the precursors for flavonoids and isoflavonoids. Chalcones are readily available from a wide range of natural resources and consist of very basic chemical scaffolds. Because the ease with which the synthesis it allows for the production of several chalcone derivatives. Various in-vitro and in-vivo studies indicate that naturally occurring and synthetic chalcone derivatives exhibit promising biological activities against cancer hallmarks such as proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics. According to their structure and functional groups, chalcones derivatives and their hybrid compounds exert a broad range of biological activities through targeting key elements and signaling molecules relevant to cancer progression. This review will provide valuable insights into the latest updates of chalcone groups as anticancer agents and extensively discuss their underlying molecular mechanisms of action.
Collapse
|
6
|
Geweely NS, Soliman MM, Ali RA, Hassaneen HM, Abdelhamid IA. Novel eco-friendly [1,2,4]triazolo[3,4-a]isoquinoline chalcone derivatives efficiency against fungal deterioration of ancient Egyptian mummy cartonnage, Egypt. Arch Microbiol 2023; 205:57. [PMID: 36609727 PMCID: PMC9825552 DOI: 10.1007/s00203-022-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023]
Abstract
Fungal deterioration is one of the major factors that significantly contribute to mummy cartonnage damage. Isolation and molecular identification of thirteen fungal species contributing to the deterioration of ancient Egyptian mummy cartonnage located in El-Lahun regions, Fayoum government, Egypt was performed. The most dominant deteriorated fungal species are Aspergillus flavus (25.70%), Aspergillus terreus (16.76%), followed by A. niger (13.97%). A newly synthesized series of tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline chalcone derivatives were synthesized and evaluated for their antifungal activities in vitro against the isolated deteriorated fungal species (Aspergillus flavus, A. niger, A. terreus, Athelia bombacina, Aureobasidium iranianum, Byssochlamys spectabilis, Cladosporium cladosporioides, C. ramotenellum, Penicillium crustosum, P. polonicum, Talaromyces atroroseus, T. minioluteus and T. purpureogenus). The most efficient chalcone derivatives are new chalcone derivative numbers 9 with minimum inhibitory concentration (MIC) ranging from 1 to 3 mg/mL followed by chalcone derivatives number 5 with MIC ranging from 1 to 4 mg/mL.
Collapse
Affiliation(s)
- Neveen S. Geweely
- grid.7776.10000 0004 0639 9286Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Mona M. Soliman
- grid.7776.10000 0004 0639 9286Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Rania A. Ali
- Department of Mummies and Human Remains Conservation, Central Department of Conservation and Restoration, Project Sector, Ministry of Tourism and Antiquities, Cairo, Egypt
| | - Hamdi M. Hassaneen
- grid.7776.10000 0004 0639 9286Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Ismail A. Abdelhamid
- grid.7776.10000 0004 0639 9286Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
| |
Collapse
|