1
|
Shen Y, Shi Z, Zhao J, Li M, Tang J, Wang N, Mo Y, Yang T, Zhou X, Chen Q, Yang P. Whole genome sequencing provides evidence for Bacillus velezensis SH-1471 as a beneficial rhizosphere bacterium in plants. Sci Rep 2023; 13:20929. [PMID: 38017088 PMCID: PMC10684890 DOI: 10.1038/s41598-023-48171-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Bacillus is widely used in agriculture due to its diverse biological activities. We isolated a Bacillus velezensis SH-1471 from the rhizosphere soil of healthy tobacco, which has broad-spectrum antagonistic activity against a variety of plant pathogenic fungi such as Fusarium oxysporum, and can be colonized in the rhizosphere of a variety of plants. This study will further explore its mechanism by combining biological and molecular biology methods. SH-1471 contains a ring chromosome of 4,181,346 bp with a mean G + C content of 46.18%. We identified 14 homologous genes related to biosynthesis of resistant secondary metabolite, and three clusters encoded potential new antibacterial substances. It also contains a large number of genes from colonizing bacteria and genes related to plant bacterial interactions. It also contains genes related to environmental stress, as well as genes related to drug resistance. We also found that there are many metabolites in the strain that can inhibit the growth of pathogens. In addition, our indoor pot test found that SH-1471 has a good control effect on tomato wilt, and could significantly improve plant height, stem circumference, root length, root weight, and fresh weight and dry weight of the aboveground part of tomato seedlings. Therefore, SH-1471 is a potential biological control strain with important application value. The results of this study will help to further study the mechanism of SH-1471 in biological control of plant diseases and promote its application.
Collapse
Affiliation(s)
- Yunxin Shen
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650204, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, 655508, China
| | - Zhufeng Shi
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650204, China
| | - Jiangyuan Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650106, China
| | - Minggang Li
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650106, China
| | - Jiacai Tang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650204, China
| | - Nan Wang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650204, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, 655508, China
| | - Yanfang Mo
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650204, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, 655508, China
| | - Tongyu Yang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650204, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, 655508, China
| | - Xudong Zhou
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650204, China
| | - Qibin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, 655508, China.
| | - Peiweng Yang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650204, China.
| |
Collapse
|
2
|
Ota T, Saburi W, Tagami T, Yu J, Komba S, Jewell LE, Hsiang T, Imai R, Yao M, Mori H. Molecular mechanism for endo-type action of glycoside hydrolase family 55 endo-β-1,3-glucanase on β1-3/1-6-glucan. J Biol Chem 2023; 299:105294. [PMID: 37774972 PMCID: PMC10637969 DOI: 10.1016/j.jbc.2023.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
The glycoside hydrolase family 55 (GH55) includes inverting exo-β-1,3-glucosidases and endo-β-1,3-glucanases, acting on laminarin, which is a β1-3/1-6-glucan consisting of a β1-3/1-6-linked main chain and β1-6-linked branches. Despite their different modes of action toward laminarin, endo-β-1,3-glucanases share with exo-β-1,3-glucosidases conserved residues that form the dead-end structure of subsite -1. Here, we investigated the mechanism of endo-type action on laminarin by GH55 endo-β-1,3-glucanase MnLam55A, identified from Microdochium nivale. MnLam55A, like other endo-β-1,3-glucanases, degraded internal β-d-glucosidic linkages of laminarin, producing more reducing sugars than the sum of d-glucose and gentiooligosaccharides detected. β1-3-Glucans lacking β1-6-linkages in the main chain were not hydrolyzed. NMR analysis of the initial degradation of laminarin revealed that MnLam55A preferentially cleaved the nonreducing terminal β1-3-linkage of the laminarioligosaccharide moiety at the reducing end side of the main chain β1-6-linkage. MnLam55A liberates d-glucose from laminaritriose and longer laminarioligosaccharides, but kcat/Km values to laminarioligosaccharides (≤4.21 s-1 mM-1) were much lower than to laminarin (5920 s-1 mM-1). These results indicate that β-glucan binding to the minus subsites of MnLam55A, including exclusive binding of the gentiobiosyl moiety to subsites -1 and -2, is required for high hydrolytic activity. A crystal structure of MnLam55A, determined at 2.4 Å resolution, showed that MnLam55A adopts an overall structure and catalytic site similar to those of exo-β-1,3-glucosidases. However, MnLam55A possesses an extended substrate-binding cleft that is expected to form the minus subsites. Sequence comparison suggested that other endo-type enzymes share the extended cleft. The specific hydrolysis of internal linkages in laminarin is presumably common to GH55 endo-β-1,3-glucanases.
Collapse
Affiliation(s)
- Tomoya Ota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jian Yu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shiro Komba
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Linda Elizabeth Jewell
- St. John's Research and Development Center, Agriculture and Agri-Food Canada, St John's, Newfoundland and Labrador, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Ryozo Imai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Rodríguez-Mendoza J, Santiago-Hernández A, Alvarez-Zúñiga MT, Gutiérrez-Antón M, Aguilar-Osorio G, Hidalgo-Lara ME. Purification and biochemical characterization of a novel thermophilic exo-β-1,3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
4
|
Shrestha KL, Liu SW, Huang CP, Wu HM, Wang WC, Li YK. Characterization and identification of essential residues of the glycoside hydrolase family 64 laminaripentaose-producing- -1, 3-glucanase. Protein Eng Des Sel 2011; 24:617-25. [DOI: 10.1093/protein/gzr031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Vijayendra SVN, Kashiwagi Y. Characterization of a new acid stable exo-beta-1,3-glucanase of Rhizoctonia solani and its action on microbial polysaccharides. Int J Biol Macromol 2008; 44:92-7. [PMID: 19022284 DOI: 10.1016/j.ijbiomac.2008.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/17/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
A new acid stable exo-beta-1,3-glucanase of Rhizoctonia solani purified from a commercial source 'Kitarase-M', by a combination of ammonium sulfate precipitation, ion-exchange and gel filtration methods, had specific activity of 0.26 U/mg protein, Km and Vmax values of 0.78 mg/ml and 0.27 mM/min/mg protein, respectively. It had molecular weight of 62 kDa with optimum activity at 40 degrees C temperature and pH 5.0, with high stability at pH of 3-7. Unique amino acid sequence was found at N-terminal end. The substrate specificity studies confirmed that it is an exo-beta-1,3-glucanase. It could hydrolyze curdlan powder to release glucose.
Collapse
Affiliation(s)
- S V N Vijayendra
- Applied Microbiology Division, National Food Research Institute, Kan-nondai, 2-1-12, Tsukuba, Ibaraki 305-8642, Japan.
| | | |
Collapse
|
6
|
Schmid F, Separovic F, McDougall BM, Stone BA, Brownlee RTC, Seviour RJ. Characterisation of the extracellular polysaccharides produced by isolates of the fungus Acremonium. Carbohydr Res 2007; 342:2481-3. [PMID: 17669385 DOI: 10.1016/j.carres.2007.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 06/04/2007] [Accepted: 06/18/2007] [Indexed: 11/18/2022]
Abstract
Solid state (13)C NMR studies of the extracellular glucans from the fungi Acremonium persicinum C38 (QM107a) and Acremonium sp. strain C106 indicated a backbone of (1-->3)-beta-linked glucosyl residues with single (1-->6)-beta-linked glucosyl side branches for both glucans. Analyses of enzymatic digestion products suggested that the average branching frequency for the A. persicinum glucan (66.7% branched) was much higher than that of the Acremonium sp. strain C106 glucan (28.6% branched). The solid state (13)C NMR spectra also indicated that both glucans are amorphous polymers with no crystalline regions, and the individual chains are probably arranged as triple helices.
Collapse
Affiliation(s)
- Frank Schmid
- Biotechnology Research Centre, La Trobe University, Bendigo, VIC 3550, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Martin K, McDougall BM, McIlroy S, Chen J, Seviour RJ. Biochemistry and molecular biology of exocellular fungal beta-(1,3)- and beta-(1,6)-glucanases. FEMS Microbiol Rev 2007; 31:168-92. [PMID: 17313520 DOI: 10.1111/j.1574-6976.2006.00055.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many fungi produce exocellular beta-glucan-degrading enzymes, the beta-glucanases including the noncellulolytic beta-(1,3)- and beta-(1,6)-glucanases, degrading beta-(1,3)- and beta-(1,6)-glucans. An ability to purify several exocellular beta-glucanases attacking the same linkage type from a single fungus is common, although unlike the beta-1,3-glucanases, production of multiple beta-1,6-glucanases is quite rare in fungi. Reasons for this multiplicity remain unclear and the multiple forms may not be genetically different but arise by posttranslational glycosylation or proteolytic degradation of the single enzyme. How their synthesis is regulated, and whether each form is regulated differentially also needs clarifying. Their industrial potential will only be realized when the genes encoding them are cloned and expressed in large quantities. This review considers what is known in molecular terms about their multiplicity of occurrence, regulation of synthesis and phylogenetic diversity. It discusses how this information assists in understanding their functions in the fungi producing them. It deals largely with exocellular beta-glucanases which here refers to those recoverable after the cells are removed, since those associated with fungal cell walls have been reviewed recently by Adams (2004). It also updates the earlier review by Pitson et al. (1993).
Collapse
Affiliation(s)
- Kirstee Martin
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | | | |
Collapse
|
8
|
Chen J, Seviour R. Medicinal importance of fungal beta-(1-->3), (1-->6)-glucans. ACTA ACUST UNITED AC 2007; 111:635-52. [PMID: 17590323 DOI: 10.1016/j.mycres.2007.02.011] [Citation(s) in RCA: 354] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 01/25/2007] [Accepted: 02/19/2007] [Indexed: 11/21/2022]
Abstract
Non-cellulosic beta-glucans are now recognized as potent immunological activators, and some are used clinically in China and Japan. These beta-glucans consist of a backbone of glucose residues linked by beta-(1-->3)-glycosidic bonds, often with attached side-chain glucose residues joined by beta-(1-->6) linkages. The frequency of branching varies. The literature suggests beta-glucans are effective in treating diseases like cancer, a range of microbial infections, hypercholesterolaemia, and diabetes. Their mechanisms of action involve them being recognized as non-self molecules, so the immune system is stimulated by their presence. Several receptors have been identified, which include: dectin-1, located on macrophages, which mediates beta-glucan activation of phagocytosis and production of cytokines, a response co-ordinated by the toll-like receptor-2. Activated complement receptors on natural killer cells, neutrophils, and lymphocytes, may also be associated with tumour cytotoxicity. Two other receptors, scavenger and lactosylceramide, bind beta-glucans and mediate a series of signal pathways leading to immunological activation. Structurally different beta-glucans appear to have different affinities toward these receptors and thus generate markedly different host responses. However, the published data are not always easy to interpret as many of the earlier studies used crude beta-glucan preparations with, for the most part, unknown chemical structures. Careful choice of beta-glucan products is essential if their benefits are to be optimized, and a better understanding of how beta-glucans bind to receptors should enable more efficient use of their biological activities.
Collapse
Affiliation(s)
- Jiezhong Chen
- Cancer Biology Program, Diamantia Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Brisbane, Queensland 4102, Australia.
| | | |
Collapse
|