1
|
Jégo M, Smadja C, Trizac-Mattern L, Mura S, Taverna M. Frontal analysis continuous capillary electrophoresis for predicting polymer nanoparticle interactions with human serum albumin. Talanta 2025; 295:128338. [PMID: 40398043 DOI: 10.1016/j.talanta.2025.128338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/16/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
Thanks to their unique physicochemical properties, polymer nanoparticles (NPs) are promising tools in nanomedicine for drug delivery and therapeutic applications. NPs made of poly(lactic acid) (PLA), a biodegradable and biocompatible polymer, are widely employed for therapeutic molecule encapsulation, offering enhanced efficacy and reduced toxicity. A poly(ethylene glycol) (PEG) coating is often added to confer stealth properties and improve intravenous stability. Upon administration, NPs rapidly interact with plasma proteins, particularly human serum albumin (HSA), influencing their biodistribution and in vivo behavior. In this study, we have formulated PLA and PLA-PEG NPs (100-350 nm, negatively charged) and evaluated their interactions with HSA using a novel frontal analysis continuous capillary electrophoresis (FACCE) method. This approach directly quantifies free HSA post-incubation with NPs, providing excellent reproducibility (RSD <2 %) and linear response over the calibration range (R2 > 0.99). Binding constants derived from Langmuir adsorption isotherms showed affinities of 105 M-1 and 104 M-1 for PLA NPs and PLA-PEG NPs, respectively clearly confirming the reduced HSA binding upon PEGylation. Compared to conventional methods such as isothermal titration calorimetry or surface plasmon resonance, FACCE proved faster and more robust results leading to analyses completion within 3.5 h. These results highlight the versatility of FACCE for characterizing NP-protein interactions and further stress the key role of PEG moieties in modulating protein binding.
Collapse
Affiliation(s)
- Mathilde Jégo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Claire Smadja
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
2
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Tenchov R, Sasso JM, Zhou QA. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjug Chem 2023. [PMID: 37162501 DOI: 10.1021/acs.bioconjchem.3c00174] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lipid nanoparticles (LNPs) have been recognized as efficient vehicles to transport a large variety of therapeutics. Currently in the spotlight as important constituents of the COVID-19 mRNA vaccines, LNPs play a significant role in protecting and transporting mRNA to cells. As one of their key constituents, polyethylene glycol (PEG)-lipid conjugates are important in defining LNP physicochemical characteristics and biological activity. PEGylation has proven particularly efficient in conferring longer systemic circulation of LNPs, thus greatly improving their pharmacokinetics and efficiency. Along with revealing the benefits of PEG conjugates, studies have revealed unexpected immune reactions against PEGylated nanocarriers such as accelerated blood clearance (ABC), involving the production of anti-PEG antibodies at initial injection, which initiates accelerated blood clearance upon subsequent injections, as well as a hypersensitivity reaction referred to as complement activation-related pseudoallergy (CARPA). Further, data have been accumulated indicating consistent yet sometimes controversial correlations between various structural parameters of the PEG-lipids, the properties of the PEGylated LNPs, and the magnitude of the observed adverse effects. Detailed knowledge and comprehension of such correlations are of foremost importance in the efforts to diminish and eliminate the undesirable immune reactions and improve the safety and efficiency of the PEGylated medicines. Here, we present an overview based on analysis of data from the CAS Content Collection regarding the PEGylated LNP immunogenicity and overall safety concerns. A comprehensive summary has been compiled outlining how various structural parameters of the PEG-lipids affect the immune responses and activities of the LNPs, with regards to their efficiency in drug delivery. This Review is thus intended to serve as a helpful resource in understanding the current knowledge in the field, in an effort to further solve the remaining challenges and to achieve full potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
4
|
Dobrovolskaia MA. Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Front Immunol 2022; 13:984252. [PMID: 36304452 PMCID: PMC9592561 DOI: 10.3389/fimmu.2022.984252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology carriers have become common in pharmaceutical products because of their benefits to drug delivery, including reduced toxicities and improved efficacy of active pharmaceutical ingredients due to targeted delivery, prolonged circulation time, and controlled payload release. While available examples of reduced drug toxicity through formulation using a nanocarrier are encouraging, current data also demonstrate that nanoparticles may change a drug’s biodistribution and alter its toxicity profile. Moreover, individual components of nanoparticles and excipients commonly used in formulations are often not immunologically inert and contribute to the overall immune responses to nanotechnology-formulated products. Said immune responses may be beneficial or adverse depending on the indication, dose, dose regimen, and route of administration. Therefore, comprehensive toxicology studies are of paramount importance even when previously known drugs, components, and excipients are used in nanoformulations. Recent data also suggest that, despite decades of research directed at hiding nanocarriers from the immune recognition, the immune system’s inherent property of clearing particulate materials can be leveraged to improve the therapeutic efficacy of drugs formulated using nanoparticles. Herein, I review current knowledge about nanoparticles’ interaction with the immune system and how these interactions contribute to nanotechnology-formulated drug products’ safety and efficacy through the lens of over a decade of nanoparticle characterization at the Nanotechnology Characterization Laboratory.
Collapse
|
5
|
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021; 13:pharmaceutics13101615. [PMID: 34683908 PMCID: PMC8539492 DOI: 10.3390/pharmaceutics13101615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Nanomaterials are now being used in a wide variety of biomedical applications. Medical and health-related issues, however, have raised major concerns, in view of the potential risks of these materials against tissue, cells, and/or organs and these are still poorly understood. These particles are able to interact with the body in countless ways, and they can cause unexpected and hazardous toxicities, especially at cellular levels. Therefore, undertaking in vitro and in vivo experiments is vital to establish their toxicity with natural tissues. In this review, we discuss the underlying mechanisms of nanotoxicity and provide an overview on in vitro characterizations and cytotoxicity assays, as well as in vivo studies that emphasize blood circulation and the in vivo fate of nanomaterials. Our focus is on understanding the role that the physicochemical properties of nanomaterials play in determining their toxicity.
Collapse
Affiliation(s)
- Abraham J. Domb
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Correspondence: (A.J.D.); (H.H.)
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Victoria Nahum
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
- Correspondence: (A.J.D.); (H.H.)
| |
Collapse
|
6
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 484] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
7
|
Awad N, Paul V, AlSawaftah NM, ter Haar G, Allen TM, Pitt WG, Husseini GA. Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacol Transl Sci 2021; 4:589-612. [PMID: 33860189 PMCID: PMC8033618 DOI: 10.1021/acsptsci.0c00212] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 12/13/2022]
Abstract
The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors. They are small enough to extravasate into solid tumors, where they slowly release their therapeutic load by passive leakage or biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH, and temperature) or externally (light, magnetic field, and ultrasound) applied stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuli-responsive nanocarriers and their application in cancer treatment with a particular focus on ultrasound.
Collapse
Affiliation(s)
- Nahid
S. Awad
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Nour M. AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Gail ter Haar
- Joint
Department of Physics, The Institute of
Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, U.K.
| | - Theresa M. Allen
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - William G. Pitt
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Tasca E, Andreozzi P, Del Giudice A, Galantini L, Schillén K, Maria Giuliani A, Ramirez MDLA, Moya SE, Giustini M. Poloxamer/sodium cholate co-formulation for micellar encapsulation of doxorubicin with high efficiency for intracellular delivery: An in-vitro bioavailability study. J Colloid Interface Sci 2020; 579:551-561. [PMID: 32623121 DOI: 10.1016/j.jcis.2020.06.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
Abstract
HYPOTHESIS Doxorubicin hydrochloride (DX) is widely used as a chemotherapeutic agent, though its severe side-effects limit its clinical use. A way to overcome these limitations is to increase DX latency through encapsulation in suitable carriers. However, DX has a high solubility in water, hindering encapsulation. The formulation of DX with sodium cholate (NaC) will reduce aqueous solubility through charge neutralization and hydrophobic interactions thus facilitating DX encapsulation into poloxamer (F127) micelles, increasing drug latency. EXPERIMENTS DX/NaC/PEO-PPO-PEO triblock copolymer (F127) formulations with high DX content (DX-PMs) have been prepared and characterized by scattering techniques, transmission electron microscopy and fluorescence spectroscopy. Cell proliferation has been evaluated after DX-PMs uptake in three cell lines (A549, Hela, 4T1). Cell uptake of DX has been studied by means of confocal laser scanning microscopy and flow cytometry. FINDINGS DX-PMs formulations result in small and stable pluronic micelles, with the drug located in the apolar core of the polymeric micelles. Cell proliferation assays show a delayed cell toxicity for the encapsulated DX compared with the free drug. Data show a good correlation between cytotoxic response and slow DX delivery to nuclei. DX-PMs offer the means to restrict DX delivery to the cell interior in a highly stable and biocompatible formulation, suitable for cancer therapy.
Collapse
Affiliation(s)
- Elisamaria Tasca
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Patrizia Andreozzi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain; Chemistry Department "Hugo Shiff", University of Florence, Via Della, Lastruccia 13, Sesto Fiorentino 50019, Firenze, Italy
| | | | - Luciano Galantini
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy; Centre for Colloid and Surface Science - C.S.G.I, Operative Unit of Bari c/o Chemistry Department, University "Aldo Moro", Bari, Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | - Maria de Los Angeles Ramirez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Sergio Enrique Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain.
| | - Mauro Giustini
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy; Centre for Colloid and Surface Science - C.S.G.I, Operative Unit of Bari c/o Chemistry Department, University "Aldo Moro", Bari, Italy.
| |
Collapse
|
9
|
Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020; 25:1174-1188. [PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Abstract
Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic CRISPR/Cas9 delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives. Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives.
Collapse
|
11
|
Analyses of equilibrium water content and blood compatibility for Poly(2-methoxyethyl acrylate) by molecular dynamics simulation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Bej R, Sarkar J, Ray D, Aswal VK, Ghosh S. Morphology Regulation in Redox Destructible Amphiphilic Block Copolymers and Impact on Intracellular Drug Delivery. Macromol Biosci 2018; 18:e1800057. [DOI: 10.1002/mabi.201800057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Raju Bej
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Jayita Sarkar
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Debes Ray
- Solid State Physics Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Vinod K. Aswal
- Solid State Physics Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Suhrit Ghosh
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
13
|
Hsieh YC, Wang HE, Lin WW, Roffler SR, Cheng TC, Su YC, Li JJ, Chen CC, Huang CH, Chen BM, Wang JY, Cheng TL, Chen FM. Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics 2018; 8:3164-3175. [PMID: 29896310 PMCID: PMC5996368 DOI: 10.7150/thno.22164] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Abstract
Rationale: Increasing frequency of human exposure to PEG-related products means that healthy people are likely to have pre-existing anti-PEG antibodies (pre-αPEG Ab). However, the influence of pre-αPEG Abs on the pharmacokinetics (PK) and therapeutic efficacy of LipoDox is unknown. Methods: We generated two pre-αPEG Ab mouse models. First, naïve mice were immunized with PEGylated protein to generate an endogenous αPEG Ab titer (endo αPEG). Second, monoclonal αPEG Abs were passively transferred (αPEG-PT) into naïve mice to establish a αPEG titer. The naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its PK. Tumor-bearing naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its biodistribution. The therapeutic efficacy of LipoDox was estimated in the tumor-bearing mice. Results: The areas under the curve (AUC)last of LipoDox in endo αPEG and αPEG-PT mice were 11.5- and 15.6- fold less, respectively, than that of the naïve group. The biodistribution results suggested that pre-αPEG Ab can significantly reduce tumor accumulation and accelerate blood clearance of 111In-labeled LipoDox from the spleen. The tumor volumes of the tumor-bearing endo αPEG and αPEG-PT mice after treatment with LipoDox were significantly increased as compared with that of the tumor-bearing naïve mice. Conclusions: Pre-αPEG Abs were found to dramatically alter the PK and reduce the tumor accumulation and therapeutic efficacy of LipoDox. Pre-αPEG may have potential as a marker to aid development of personalized therapy using LipoDox and achieve optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Yuan-Chin Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Wei Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan
| | - Ta-Chun Cheng
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
| | - Yu-Cheng Su
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan
| | - Jia-Je Li
- Department of Biomedical Imaging and Radiological Sciences and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Han Huang
- Department of Biomedical Imaging and Radiological Sciences and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan
| | - Jaw-Yuan Wang
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Fang-Ming Chen
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, 68 Jhonghua third Road, Kaohsiung 80145, Taiwan
- Cancer Center, Kaohsiung Municipal Ta-Tung Hospital, 68 Jhonghua third Road, Kaohsiung 80145, Taiwan
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University Hospital, 100 Tzyou first Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Sato K, Kobayashi S, Sekishita A, Wakui M, Tanaka M. Synthesis and Thrombogenicity Evaluation of Poly(3-methoxypropionic acid vinyl ester): A Candidate for Blood-Compatible Polymers. Biomacromolecules 2017; 18:1609-1616. [DOI: 10.1021/acs.biomac.7b00221] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kazuhiro Sato
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shingo Kobayashi
- Institute
for Materials Chemistry and Engineering, Kyushu University, CE41
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Asuka Sekishita
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Miyuki Wakui
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- Institute
for Materials Chemistry and Engineering, Kyushu University, CE41
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Guo Y, Zhao Y, Wang T, Li R, Han M, Dong Z, Zhu C, Wang X. Hydroxycamptothecin Nanorods Prepared by Fluorescently Labeled Oligoethylene Glycols (OEG) Codendrimer: Antitumor Efficacy in Vitro and in Vivo. Bioconjug Chem 2016; 28:390-399. [DOI: 10.1021/acs.bioconjchem.6b00536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yifei Guo
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Yanna Zhao
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Ting Wang
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Ran Li
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Chunyan Zhu
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| |
Collapse
|
16
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
17
|
Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials 2016; 103:75-85. [PMID: 27376559 DOI: 10.1016/j.biomaterials.2016.06.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022]
Abstract
A novel phototheranostic platform based on tri-malonate derivative of fullerene C70 (TFC70)/photosensitizer (Chlorin e6, Ce6) nanovesicles (FCNVs) has been developed for effective tumor imaging and treatment. The FCNVs were prepared from amphiphilic TFC70-oligo ethylene glycol -Ce6 molecules. The developed FCNVs possessed the following advantages: (i) high loading efficiency of Ce6 (up to ∼57 wt%); (ii) efficient absorption in near-infrared light region; (iii) enhanced cellular uptake efficiency of Ce6 in vitro and in vivo; (iv) good biocompatibility and total clearance out from the body. These unique properties suggest that the as-prepared FCNVs could be applied as an ideal theranostic agent for simultaneous imaging and photodynamic therapy of tumor. This finding may provide a good solution to highly efficient phototheranostic applications based on fullerene derivatives fabricated nanostructures.
Collapse
|
18
|
Gao M, Zhu X, Wu L, Qiu L. Cationic Polyphosphazene Vesicles for Cancer Immunotherapy by Efficient in Vivo Cytokine IL-12 Plasmid Delivery. Biomacromolecules 2016; 17:2199-209. [DOI: 10.1021/acs.biomac.6b00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Menghua Gao
- College
of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiumei Zhu
- College
of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Liping Wu
- College
of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry
of Education (MOE) Key Laboratory of Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| |
Collapse
|
19
|
Wang X, Yang C, Wang C, Guo L, Zhang T, Zhang Z, Yan H, Liu K. Polymeric micelles with α-glutamyl-terminated PEG shells show low non-specific protein adsorption and a prolonged in vivo circulation time. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:766-772. [DOI: 10.1016/j.msec.2015.10.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/12/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
|
20
|
Yang Q, Cai J, Sun S, Kang X, Guo J, Zhu Y, Yan L, Jing X, Wang Z. Polymer nanoparticle delivery of dichloroacetate and DACH-Pt to enhance antitumor efficacy and lower systemic toxicity. Biomater Sci 2016; 4:661-9. [DOI: 10.1039/c5bm00439j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nanoparticles loaded with dichloroacetate and DACHPt showed potential to sensitize cancer cells to chemotherapy in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Jing Cai
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Si Sun
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Xiang Kang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Jing Guo
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Yapei Zhu
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Lesan Yan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Zehua Wang
- Department of Obstetrics and Gynecology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| |
Collapse
|
21
|
Nakatsuji M, Inoue H, Kohno M, Saito M, Tsuge S, Shimizu S, Ishida A, Ishibashi O, Inui T. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38. PLoS One 2015; 10:e0142206. [PMID: 26529243 PMCID: PMC4631600 DOI: 10.1371/journal.pone.0142206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023] Open
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.
Collapse
Affiliation(s)
- Masatoshi Nakatsuji
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Haruka Inoue
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Masaki Kohno
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mayu Saito
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Syogo Tsuge
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shota Shimizu
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsuko Ishida
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Osamu Ishibashi
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takashi Inui
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- * E-mail:
| |
Collapse
|
22
|
Hu M, Stanzione F, Sum AK, Faller R, Deserno M. Design Principles for Nanoparticles Enveloped by a Polymer-Tethered Lipid Membrane. ACS NANO 2015; 9:9942-9954. [PMID: 26380891 DOI: 10.1021/acsnano.5b03439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose the design for a nanoparticle carrier that combines three existing motifs into a single construct: a liposome is stabilized by anchoring it to an enclosed solid core via extended polymeric tethers that are chemically grafted to the core and physisorb into the surrounding lipid membrane. Such a design would exhibit several enticing properties, among them: (i) the anchoring stabilizes the liposome against a variety of external stresses, while preserving an aqueous compartment between core and membrane; (ii) the interplay of design parameters such as polymer length or grafting density enforces strong constraints on nanoparticle size and hence ensures a high degree of uniformity; and (iii) the physical and chemical characteristics of the individual constituents equip the construct with numerous functionalities that can be exploited in many ways. However, navigating the large parameter space requires a sound prior understanding for how various design features work together, and how this impacts potential pathways for synthesizing and assembling these nanoparticles. In this paper, we examine these connections in detail, using both soft matter theory and computer simulations at all levels of resolution. We thereby derive strong constraints on the experimentally relevant parameter space, and also propose potential equilibrium and nonequilibrium pathways for nanoparticle assembly.
Collapse
Affiliation(s)
- Mingyang Hu
- Department of Physics, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Stanzione
- Department of Chemical and Biological Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Amadeu K Sum
- Department of Chemical and Biological Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Roland Faller
- Department of Chemical Engineering and Materials Science, University of California, Davis , Davis, California 95616, United States
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Kadali R, Kadiyala G, Gurunathan J. Pre-clinical assessment of the effectiveness of modified polyvalent antivenom in the neutralization ofNaja najavenom toxicity. Biotechnol Appl Biochem 2015; 63:827-833. [DOI: 10.1002/bab.1428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 07/30/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Renu Kadali
- School of Bio Sciences and Technology; Vellore Institute of Technology; Vellore India
| | - Gopi Kadiyala
- School of Bio Sciences and Technology; Vellore Institute of Technology; Vellore India
| | - Jayaraman Gurunathan
- School of Bio Sciences and Technology; Vellore Institute of Technology; Vellore India
| |
Collapse
|
24
|
Sato K, Kobayashi S, Kusakari M, Watahiki S, Oikawa M, Hoshiba T, Tanaka M. The Relationship Between Water Structure and Blood Compatibility in Poly(2-methoxyethyl Acrylate) (PMEA) Analogues. Macromol Biosci 2015; 15:1296-303. [DOI: 10.1002/mabi.201500078] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/07/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Kazuhiro Sato
- Department of Biochemical Engineering, Graduate School of Science and Engineering; Yamagata University; 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Shingo Kobayashi
- Department of Biochemical Engineering, Graduate School of Science and Engineering; Yamagata University; 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Institute for Materials Chemistry and Engineering; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Miho Kusakari
- Department of Biochemical Engineering, Graduate School of Science and Engineering; Yamagata University; 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Shogo Watahiki
- Department of Biochemical Engineering, Graduate School of Science and Engineering; Yamagata University; 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Masahiko Oikawa
- Department of Biochemical Engineering, Graduate School of Science and Engineering; Yamagata University; 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Takashi Hoshiba
- Department of Biochemical Engineering, Graduate School of Science and Engineering; Yamagata University; 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044
| | - Masaru Tanaka
- Department of Biochemical Engineering, Graduate School of Science and Engineering; Yamagata University; 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Institute for Materials Chemistry and Engineering; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
25
|
Biodistribution of size-selected lyophilisomes in mice. Eur J Pharm Biopharm 2015; 94:141-51. [PMID: 25953331 DOI: 10.1016/j.ejpb.2015.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 12/29/2022]
Abstract
Lyophilisomes are a novel class of proteinaceous biodegradable nano/microparticle capsules developed for tumor drug delivery. The in vivo characteristics of lyophilisomes are unknown and, therefore, the time course of biodistribution of sized albumin-based lyophilisomes in CD1 mice after intravenous administration was studied. Lyophilisomes, prepared from Dylight680-labeled albumin, were sized using a sucrose gradient centrifugation methodology and four fractions with a mean size of approximately 200nm, 400nm, 550nm, and 650nm were pooled for in/ex vivo localization, (immuno)histochemistry and biochemical analysis. Lyophilisomes were rapidly taken out of the circulation by the liver and spleen. Immunohistochemistry revealed that lyophilisomes were taken up in the liver by F4/80 positive macrophages, and in the spleen by Sign-R1 positive macrophages specifically located in the marginal zones. Lyophilisomes were most likely degraded by the liver and spleen and subsequently excreted via the urine, as high levels of degraded Dylight680-labeled albumin were detected in the urine. This was corroborated by electron microscopy of the spleen, which showed intact lyophilisomes in the marginal zone 5 and 30min after injection, but not after 2h. In conclusion, IV injected lyophilisomes are rapidly entrapped by liver and splenic macrophages, biodegraded, and excreted in the urine.
Collapse
|
26
|
Hamad-Schifferli K. Exploiting the novel properties of protein coronas: emerging applications in nanomedicine. Nanomedicine (Lond) 2015; 10:1663-74. [DOI: 10.2217/nnm.15.6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein coronas have been the focus of a great deal of study recently due to their inevitable formation and their impact on the biological consequences of nanomaterials. Although the field is still far from completely and definitively understanding protein coronas, we now have a good understanding of their behavior and their key characteristics. Protein corona composition changes with the environment and time, and also the physical properties of the underlying nanoparticle. More importantly, the protein corona has significant biological impact. Because we have a basic understanding of coronas, we can now move forward to exploiting their unique properties. Here, we discuss some emerging ways in which the protein corona is explicitly utilized for different applications in biology and medicine.
Collapse
|
27
|
Fornaguera C, Calderó G, Mitjans M, Vinardell MP, Solans C, Vauthier C. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. NANOSCALE 2015; 7:6045-58. [PMID: 25766431 DOI: 10.1039/c5nr00733j] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising alternative for delivery of drugs to specific cells. However, studies on their interaction with diverse blood components using different techniques are still lacking. Therefore, in the present work, the interaction of PLGA nanoparticles with blood components was described using different complementary techniques. The influence of different encapsulated compounds/functionalizing agents on these interactions was also reported. It is worth noting that all these techniques can be simply performed, without the need for highly sophisticated apparatus or skills. Moreover, their transference to industries and application of quality control could be easily performed. Serum albumin was adsorbed onto all types of tested nanoparticles. The saturation concentration was dependent on the nanoparticle size. In contrast, fibrinogen aggregation was dependent on nanoparticle surface charge. The complement activation was also influenced by the nanoparticle functionalization; the presence of a functionalizing agent increased complement activation, while the addition of an encapsulated compound only caused a slight increase. None of the nanoparticles influenced the coagulation cascade at low concentrations. However, at high concentrations, cationized nanoparticles did activate the coagulation cascade. Interactions of nanoparticles with erythrocytes did not reveal any hemolysis. Interactions of PLGA nanoparticles with blood proteins depended both on the nanoparticle properties and the protein studied. Independent of their loading/surface functionalization, PLGA nanoparticles did not influence the coagulation cascade and did not induce hemolysis of erythrocytes; they could be defined as safe concerning induction of embolization and cell lysis.
Collapse
Affiliation(s)
- Cristina Fornaguera
- Institute of Advanced Chemistry of Catalonia IQAC/CSIC and CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Jordi Girona, 18-26, Barcelona, 08034, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:655-77. [PMID: 25707913 DOI: 10.1002/wnan.1339] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/07/2015] [Accepted: 01/18/2015] [Indexed: 12/22/2022]
Abstract
The modification of protein and nanoparticle therapeutics with polyethylene glycol (PEG), a flexible, uncharged, and highly hydrophilic polymer, is a widely adopted approach to reduce RES clearance, extend circulation time, and improve drug efficacy. Nevertheless, an emerging body of literature, generated by numerous research groups, demonstrates that the immune system can produce antibodies that specifically bind PEG, which can lead to the 'accelerated blood clearance' of PEGylated therapeutics. In animals, anti-PEG immunity is typically robust but short-lived and consists of a predominantly anti-PEG IgM response. Rodent studies suggest that the induction of anti-PEG antibodies (α-PEG Abs) primarily occurs through a type 2 T-cell independent mechanism. Although anti-PEG immunity is less well-studied in humans, the presence of α-PEG Abs has been correlated with reduced efficacy of PEGylated therapeutics in clinical trials. The prevalence of anti-PEG IgG and reports of memory immune responses, as well as the existence of α-PEG Abs in healthy untreated individuals, suggests that the mechanism(s) and features of human anti-PEG immune responses may differ from those of animal models. Many questions, including the incidence rate of pre-existing α-PEG Abs and immunological mechanism(s) of α-PEG Ab formation in humans, must be answered in order to fully address the potential complications of anti-PEG immunity.
Collapse
Affiliation(s)
- Qi Yang
- Division of Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, USA.,UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Xie C, Yang C, Zhang P, Zhang J, Wu W, Jiang X. Synthesis of drug-crosslinked polymer nanoparticles. Polym Chem 2015. [DOI: 10.1039/c4py01722f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new kind of drug-crosslinked polymer nanoparticle was synthesized. The nanoparticles were composed by a phenylboronic acid modified 10-hydroxycamptothecin (the crosslinker) and 1,2-diol-rich PEG-PGMA diblock copolymer (the backbone), and crosslinked by phenylboronic ester bond.
Collapse
Affiliation(s)
- Chen Xie
- MOE Key Laboratory of High Performance Polymer Materials and Technology
- Jiangsu Key Laboratory for Nanotechnology
- and Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
| | - Chenchen Yang
- MOE Key Laboratory of High Performance Polymer Materials and Technology
- Jiangsu Key Laboratory for Nanotechnology
- and Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
| | - Peng Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology
- Jiangsu Key Laboratory for Nanotechnology
- and Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
| | - Jialiang Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology
- Jiangsu Key Laboratory for Nanotechnology
- and Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology
- Jiangsu Key Laboratory for Nanotechnology
- and Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology
- Jiangsu Key Laboratory for Nanotechnology
- and Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- Nanjing University
| |
Collapse
|
30
|
Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm 2015; 89:163-74. [DOI: 10.1016/j.ejpb.2014.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
|
31
|
Cabral RM, Baptista PV. Anti-cancer precision theranostics: a focus on multifunctional gold nanoparticles. Expert Rev Mol Diagn 2014; 14:1041-52. [DOI: 10.1586/14737159.2014.965683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Baptista PV. Gold nanobeacons: a potential nanotheranostics platform. Nanomedicine (Lond) 2014; 9:2247-50. [DOI: 10.2217/nnm.14.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Rial-Hermida MI, Oliveira NM, Concheiro A, Alvarez-Lorenzo C, Mano JF. Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles. Acta Biomater 2014; 10:4314-22. [PMID: 24937139 DOI: 10.1016/j.actbio.2014.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/23/2014] [Accepted: 06/09/2014] [Indexed: 11/28/2022]
Abstract
Superamphiphobic surfaces were evaluated as a tool to prepare spherical particles from polymers and solvents of very diverse nature, under mild conditions and with 100% drug encapsulation yield. Different from bioinspired superhydrophobic surfaces suitable only for aqueous dispersions, the superamphiphobic platforms allowed the formation of spherical droplets when solvents of any polarity were deposited onto them. Spherical poly(d,l-lactide-co-glycolide) (PLGA) particles were synthesized by placing drops of PLGA/ciprofloxacin suspensions in dioxane on a superamphiphobic surface followed by solvent evaporation. The particles prepared covering a wide range of PLGA/ciprofloxacin weight ratios delivered a 20% dose in the first 24h and then sustained the release of the remaining drug for more than 1month. The particles, both freshly prepared and after being 26days in the release medium, showed efficiency against different types of microorganisms. The developed polymer- and solvent-independent approach could be useful for microencapsulation with very high efficiency of active substances of varied nature into size-tunable particles for a wide range of applications in an affordable and cost-effective manner.
Collapse
Affiliation(s)
- M I Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - N M Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, Caldas das Taipas, Guimarães 4806-909, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - C Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - J F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, Caldas das Taipas, Guimarães 4806-909, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
34
|
Gagliardi M. Polymeric PEGylated nanoparticles as drug carriers: How preparation and loading procedures influence functional properties. J Appl Polym Sci 2014. [DOI: 10.1002/app.41310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mariacristina Gagliardi
- Center for Micro-BioRobotics @SSSA; Istituto Italiano di Tecnologia; Viale Rinaldo Piaggio, 34 56025 Pontedera Italy
| |
Collapse
|
35
|
An FF, Yang YL, Liu J, Ye J, Zhang JF, Zhou MJ, Zhang XJ, Zheng CJ, Liang XJ, Zhang XH. A reticuloendothelial system-stealthy dye–albumin nanocomplex as a highly biocompatible and highly luminescent nanoprobe for targeted in vivo tumor imaging. RSC Adv 2014. [DOI: 10.1039/c3ra47058j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4616-23. [DOI: 10.1016/j.msec.2013.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/21/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022]
|
37
|
Cifuentes-Rius A, de Puig H, Kah JCY, Borros S, Hamad-Schifferli K. Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS NANO 2013; 7:10066-74. [PMID: 24128271 DOI: 10.1021/nn404166q] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We manipulate the passive release rates of DNA payloads on protein coronas formed around nanoparticles (NPs) by varying the corona composition. The coronas are prepared using a mixture of hard and soft corona proteins. We form coronas around gold nanorods (NRs), nanobones (NBs), and carbon nanotubes (CNTs) from human serum (HS) and find that tuning the amount of human serum albumin (HSA) in the NR-coronas (NR-HS-DNA) changes the payload release profile. The effect of buffer strength, HS concentration, and concentration of the cetyltrimethylammonium bromide (CTAB) passivating the NP surfaces on passive release is explored. We find that corona properties play an important role in passive release, and concentrations of CTAB, HS, and phosphate buffer used in corona formation can tune payload release profiles. These advances in understanding protein corona properties bring us closer toward developing a set of basic design rules that enable their manipulation and optimization for particular biological applications.
Collapse
Affiliation(s)
- Anna Cifuentes-Rius
- Grup d'Enginyeria de Materials (GEMAT), Institut Quimic de Sarrià, Universitat Ramon Llull , Via Augusta 390, 08017 Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Yang Y, Neef T, Mittelholzer C, Garcia Garayoa E, Bläuenstein P, Schibli R, Aebi U, Burkhard P. The biodistribution of self-assembling protein nanoparticles shows they are promising vaccine platforms. J Nanobiotechnology 2013; 11:36. [PMID: 24219600 PMCID: PMC3832906 DOI: 10.1186/1477-3155-11-36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/07/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Because of the need to limit side-effects, nanoparticles are increasingly being studied as drug-carrying and targeting tools. We have previously reported on a scheme to produce protein-based self-assembling nanoparticles that can act as antigen display platforms. Here we attempted to use the same system for cancer-targeting, making use of a C-terminal bombesin peptide that has high affinity for a receptor known to be overexpressed in certain tumors, as well as an N-terminal polyhistidine tag that can be used for radiolabeling with technetium tricarbonyl. RESULTS In order to increase circulation time, we experimented with PEGylated and unPEGylated varities typo particle. We also tested the effect of incorporating different numbers of bombesins per nanoparticle. Biophysical characterization determined that all configurations assemble into regular particles with relatively monodisperse size distributions, having peaks of about 33-36 nm. The carbonyl method used for labeling produced approximately 80% labeled nanoparticles. In vitro, the nanoparticles showed high binding, both specific and non-specific, to PC-3 prostate cancer cells. In vivo, high uptake was observed for all nanoparticle types in the spleens of CD-1 nu/nu mice, decreasing significantly over the course of 24 hours. High uptake was also observed in the liver, while only low uptake was seen in both the pancreas and a tumor xenograft. CONCLUSIONS The data suggest that the nanoparticles are non-specifically taken up by the reticuloendothelial system. Low uptake in the pancreas and tumor indicate that there is little or no specific targeting. PEGylation or increasing the amount of bombesins per nanoparticle did not significantly improve targeting. In particular, the uptake in the spleen, which is a primary organ of the immune system, highlights the potential of the nanoparticles as vaccine carriers. Also, the decrease in liver and spleen radioactivity with time implies that the nanoparticles are broken down and cleared. This is an important finding, as it shows that the nanoparticles can be safely used as a vaccine platform without the risk of prolonged side effects. Furthermore, it demonstrates that technetium carbonyl radiolabeling of our protein-based nanoparticles can be used to evaluate their pharmacokinetic properties in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter Burkhard
- Department of Molecular and Cell Biology and Institute of Materials Science, University of Connecticut, 97 N, Eagleville Road, Storrs, CT 06250, USA.
| |
Collapse
|
39
|
Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 2013; 43:444-72. [PMID: 24100581 DOI: 10.1039/c3cs60299k] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of nanotechnology has revolutionized drug delivery in terms of improving drug efficacy and safety. Both polymer-based and lipid-based drug-loaded nanocarriers have demonstrated clinical benefit to date. However, to address the multifaceted drug delivery challenges ahead and further expand the spectrum of therapeutic applications, hybrid lipid-polymer nanocomposites have been designed to merge the beneficial features of both polymeric drug delivery systems and liposomes in a single nanocarrier. This review focuses on different classes of nanohybrids characterized by a drug-loaded polymeric matrix core enclosed in a lipid shell. Various nanoengineering approaches to obtain lipid-polymer nanocomposites with a core-shell nanoarchitecture will be discussed as well as their predominant applications in drug delivery.
Collapse
Affiliation(s)
- Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
40
|
Tietze R, Lyer S, Dürr S, Struffert T, Engelhorn T, Schwarz M, Eckert E, Göen T, Vasylyev S, Peukert W, Wiekhorst F, Trahms L, Dörfler A, Alexiou C. Efficient drug-delivery using magnetic nanoparticles — biodistribution and therapeutic effects in tumour bearing rabbits. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:961-71. [DOI: 10.1016/j.nano.2013.05.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/28/2022]
|
41
|
Zhu S, Niu M, O'Mary H, Cui Z. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm 2013; 10:3525-30. [PMID: 23901887 DOI: 10.1021/mp400216r] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is increasingly evident that tumor-associated macrophages (TAMs) play an important role in tumor invasion, proliferation, and metastasis. While delivery of drugs, imaging agents, and vaccines to TAMs was achieved by exploiting membrane receptors on TAMs, the uptake by normal macrophages remains an issue. In this communication, we report a PEG-sheddable, mannose-modified nanoparticle platform that can efficiently target TAMs via mannose-mannose receptor recognition after acid-sensitive PEG shedding in the acidic tumor microenvironment, while their uptake by normal macrophages in the mononuclear phagocyte system (MPS) organs was significantly reduced due to effective PEG shielding at neutral pH. These nanoparticles have the potential to target drugs of interest to TAMs, with decreased uptake by normal macrophages.
Collapse
Affiliation(s)
- Saijie Zhu
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
42
|
Hubbs AF, Sargent LM, Porter DW, Sager TM, Chen BT, Frazer DG, Castranova V, Sriram K, Nurkiewicz TR, Reynolds SH, Battelli LA, Schwegler-Berry D, McKinney W, Fluharty KL, Mercer RR. Nanotechnology: toxicologic pathology. Toxicol Pathol 2013; 41:395-409. [PMID: 23389777 DOI: 10.1177/0192623312467403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xie L, Jiang W, Nie Y, He Y, Jiang Q, Lan F, Wu Y, Gu Z. Low aggregation magnetic polyethyleneimine complexes with different saturation magnetization for efficient gene transfection in vitro and in vivo. RSC Adv 2013. [DOI: 10.1039/c3ra43588a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
44
|
Yildirim A, Ozgur E, Bayindir M. Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. J Mater Chem B 2013; 1:1909-1920. [DOI: 10.1039/c3tb20139b] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Nanocarriers as Nanomedicines. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|