1
|
Wang J, Zhang Z, Zhuo Y, Zhang Z, Chen R, Liang L, Jiang X, Nie D, Liu C, Zou Z, Li X, Li J, Wang B, Wang R, Gan Y, Yu M. Endoplasmic reticulum-targeted delivery of celastrol and PD-L1 siRNA for reinforcing immunogenic cell death and potentiating cancer immunotherapy. Acta Pharm Sin B 2024; 14:3643-3660. [PMID: 39234613 PMCID: PMC11372457 DOI: 10.1016/j.apsb.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 09/06/2024] Open
Abstract
The prospect of employing chemoimmunotherapy targeted towards the endoplasmic reticulum (ER) presents an opportunity to amplify the synergistic effects of chemotherapy and immunotherapy. In this study, we initially validated celastrol (CEL) as an inducer of immunogenic cell death (ICD) by promoting ER stress and autophagy in colorectal cancer (CRC) cells. Subsequently, an ER-targeted strategy was posited, involving the codelivery of CEL with PD-L1 small interfering RNAs (siRNA) using KDEL peptide-modified exosomes derived from milk (KME), to enhance chemoimmunotherapy outcomes. Our findings demonstrate the efficient transportation of KME to the ER via the Golgi-to-ER pathway. Compared to their non-targeting counterparts, KME exhibited a significant augmentation of the CEL-induced ICD effect. Additionally, it facilitated the release of danger signaling molecules (DAMPs), thereby stimulating the antigen-presenting function of dendritic cells and promoting the infiltration of T cells into the tumor. Concurrently, the ER-targeted delivery of PD-L1 siRNA resulted in the downregulation of both intracellular and membrane PD-L1 protein expression, consequently fostering the proliferation and activity of CD8+ T cells. Ultimately, the ER-targeted formulation exhibited enhanced anti-tumor efficacy and provoked anti-tumor immune responses against orthotopic colorectal tumors in vivo. Collectively, a robust ER-targeted delivery strategy provides an encouraging approach for achieving potent cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Jie Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhuan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongrong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohe Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingqi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
3
|
Song J, Fransen PPKH, Bakker MH, Wijnands SPW, Huang J, Guo S, Dankers PYW. The effect of charge and albumin on cellular uptake of supramolecular polymer nanostructures. J Mater Chem B 2024; 12:4854-4866. [PMID: 38682307 PMCID: PMC11111113 DOI: 10.1039/d3tb02631k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/30/2024] [Indexed: 05/01/2024]
Abstract
Intracellular delivery of functional biomolecules by using supramolecular polymer nanostructures has gained significant interest. Here, various charged supramolecular ureido-pyrimidinone (UPy)-aggregates were designed and formulated via a simple "mix-and-match" method. The cellular internalization of these UPy-aggregates in the presence or absence of serum proteins by phagocytic and non-phagocytic cells, i.e., THP-1 derived macrophages and immortalized human kidney cells (HK-2 cells), was systematically investigated. In the presence of serum proteins the UPy-aggregates were taken up by both types of cells irrespective of the charge properties of the UPy-aggregates, and the UPy-aggregates co-localized with mitochondria of the cells. In the absence of serum proteins only cationic UPy-aggregates could be effectively internalized by THP-1 derived macrophages, and the internalized UPy-aggregates either co-localized with mitochondria or displayed as vesicular structures. While the cationic UPy-aggregates were hardly internalized by HK-2 cells and could only bind to the membrane of HK-2 cells. With adding and increasing the amount of serum albumin in the cell culture medium, the cationic UPy-aggregates were gradually taken up by HK-2 cells without anchoring on the cell membranes. It is proposed that the serum albumin regulates the cellular internalization of UPy-aggregates. These results provide fundamental insights for the fabrication of supramolecular polymer nanostructures for intracellular delivery of therapeutics.
Collapse
Affiliation(s)
- Jiankang Song
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Peter-Paul K H Fransen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Maarten H Bakker
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Sjors P W Wijnands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Jingyi Huang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Shuaiqi Guo
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| |
Collapse
|
4
|
Xiao B, Adjei-Sowah E, Benoit DSW. Integrating osteoimmunology and nanoparticle-based drug delivery systems for enhanced fracture healing. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102727. [PMID: 38056586 PMCID: PMC10872334 DOI: 10.1016/j.nano.2023.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Fracture healing is a complex interplay of molecular and cellular mechanisms lasting from days to weeks. The inflammatory phase is the first stage of fracture healing and is critical in setting the stage for successful healing. There has been growing interest in exploring the role of the immune system and novel therapeutic strategies, such as nanoparticle drug delivery systems in enhancing fracture healing. Advancements in nanotechnology have revolutionized drug delivery systems to the extent that they can modulate immune response during fracture healing by leveraging unique physiochemical properties. Therefore, understanding the intricate interactions between nanoparticle-based drug delivery systems and the immune response, specifically macrophages, is essential for therapeutic efficacy. This review provides a comprehensive overview of the relationship between the immune system and nanoparticles during fracture healing. Specifically, we highlight the influence of nanoparticle characteristics, such as size, surface properties, and composition, on macrophage activation, polarization, and subsequent immune responses. IMPACT STATEMENT: This review provides valuable insights into the interplay between fracture healing, the immune system, and nanoparticle-based drug delivery systems. Understanding nanoparticle-macrophage interactions can advance the development of innovative therapeutic approaches to enhance fracture healing, improve patient outcomes, and pave the way for advancements in regenerative medicine.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA; Materials Science Program, University of Rochester, Rochester, NY 14623, USA; Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
5
|
Oziri OJ, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, Sato SI, Yamamoto T. Topology-Dependent Interaction of Cyclic Poly(ethylene glycol) Complexed with Gold Nanoparticles against Bovine Serum Albumin for a Colorimetric Change. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5286-5295. [PMID: 34878285 DOI: 10.1021/acs.langmuir.1c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Unique physical and chemical properties arising from a polymer topology recently draw significant attention. In this study, cyclic poly(ethylene glycol) (c-PEG) was found to significantly interact with bovine serum albumin (BSA), suggested by nuclear magnetic resonance, dynamic light scattering, and fluorescence spectroscopy. On the other hand, linear HO-PEG-OH and MeO-PEG-OMe showed no affinity. Furthermore, a complex of gold nanoparticles and c-PEG (AuNPs/c-PEG) attracted BSA to form aggregates, and the red color of the AuNPs dispersion evidently disappeared, whereas ones with linear PEG or without PEG did not demonstrate such a phenomenon. The interactions among BSA, AuNPs, and PEG were investigated by changing the incubation time and concentration of the components by using UV-Vis and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Onyinyechukwu Justina Oziri
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Shin-Ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
6
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Abstract
Currently, peptide-nanoparticle (NP) conjugates have been demonstrated to be efficient and powerful tools for the treatment and the diagnosis of various diseases as well as in the bioimaging application. Several bioconjugation strategies have been adopted to formulate the peptide-NP conjugates. In this review, we discuss the exciting applications of peptide-gold (Au) NP conjugates in the area of drug delivery, targeting, cancer therapy, brain diseases, vaccines, immune modulation, biosensor, colorimetric detection of heavy metals, and bio-labeling in vitro and in vivo models. Within this framework, various approaches such as radiotherapy, photothermal therapy, photodynamic therapy and chemo-photothermal therapy have been demonstrated for the treatment of several diseases. Moreover, we highlight how the morphology, size, density of peptide and the protein corona influence the biological activity, biodistribution and biological fate of peptide-AuNP conjugates. In the end, we discuss the future outlook and the challenges being faced in the clinical translation of the peptide-AuNP conjugates. Overall, this review emphasizes that the peptide-AuNP conjugates might be used as potential theranostic agents for the treatment of life-threatening diseases in an economical fashion in the future.
Collapse
Affiliation(s)
- Akhilesh Rai
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Breznica P, Koliqi R, Daka A. A review of the current understanding of nanoparticles protein corona composition. Med Pharm Rep 2020; 93:342-350. [PMID: 33225259 PMCID: PMC7664725 DOI: 10.15386/mpr-1756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Upon entering into the biological environments, the surface of the nanoparticles is immediately coated with proteins and form the so-called a protein corona due to which a nanoparticle changes its “synthetic” identity to a new “biological” identity. Different types of nanoparticles have different protein binding profiles, which is why they have different protein corona composition and therefore it cannot be said that there is a universal protein corona. The composition and amount of protein in the corona depends on the physical and chemical characteristics of the nanoparticles, the type of biological medium and the exposure time. Protein corona increases the diameter but also changes the composition of the surface of the nanoparticles and these changes affect biodistribution, efficacy, and toxicity of the nanoparticles.
Collapse
Affiliation(s)
- Pranvera Breznica
- Department of Pharmaceutical Chemistry, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| | - Rozafa Koliqi
- Department of Clinical Pharmacy and Biopharmacy, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| | - Arlinda Daka
- Department of Clinical Pharmacy and Biopharmacy, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| |
Collapse
|
10
|
Tavernaro I, Rodrigo AM, Kandziora M, Kuntz S, Dernedde J, Trautwein C, Tacke F, Blas‐Garcia A, Bartneck M. Modulating Myeloid Immune Cell Migration Using Multivalently Presented Monosaccharide Ligands for Advanced Immunotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Isabella Tavernaro
- Institute of Inorganic and Analytical Chemistry Justus‐Liebig‐University Giessen Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Alberto Marti Rodrigo
- Dpto.Farmacología Facultad de Medicina Avda Blasco Ibañez n.15‐17 46010 Valencia Spain
| | - Maja Kandziora
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Sabine Kuntz
- Institute of Nutritional Sciences Justus‐Liebig‐University Giessen Wilhelmstraße 20 35392 Giessen Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | | | - Frank Tacke
- Department of Hepatology & Gastroenterology Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | - Ana Blas‐Garcia
- Dpto.Farmacología Facultad de Medicina Avda Blasco Ibañez n.15‐17 46010 Valencia Spain
| | | |
Collapse
|
11
|
Chen D, Ganesh S, Wang W, Amiji M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine (Lond) 2017; 12:2113-2135. [DOI: 10.2217/nnm-2017-0178] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although a variety of nanoparticles (NPs) have been used for drug delivery applications, their surfaces are immediately covered by plasma protein corona upon systemic administration. As a result, the adsorbed proteins create a unique biological identity of the NPs that lead to unpredictable performance. The protein corona on NPs could also impede active targeting, induce off-target effects, trigger particle clearance and even provoke toxicity. This article reviews the fundamentals of NP–plasma protein interaction, the consequences of the interactions, and provides insights into the correlations of protein corona with biodistribution and cellular delivery. We hope that this review will trigger additional questions and possible solutions that lead to more favorable developments in NP-based targeted delivery systems.
Collapse
Affiliation(s)
- Dongyu Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Shanthi Ganesh
- Department of Pre-Clinical Oncology, Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Weimin Wang
- Department of Chemistry and Formulation, Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Pederzoli F, Tosi G, Vandelli MA, Belletti D, Forni F, Ruozi B. Protein corona and nanoparticles: how can we investigate on? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1467] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/19/2017] [Accepted: 02/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Pederzoli
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Giovanni Tosi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | | | - Daniela Belletti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Flavio Forni
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Barbara Ruozi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
13
|
Schöttler S, Landfester K, Mailänder V. Die Steuerung des Stealth-Effekts von Nanoträgern durch das Verständnis der Proteinkorona. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Susanne Schöttler
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Hautklinik; Universitätsmedizin der Johannes Gutenberg-Universität; Langenbeckstraße 1 55131 Mainz Deutschland
| | - Katharina Landfester
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Volker Mailänder
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Hautklinik; Universitätsmedizin der Johannes Gutenberg-Universität; Langenbeckstraße 1 55131 Mainz Deutschland
| |
Collapse
|
14
|
Schöttler S, Landfester K, Mailänder V. Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angew Chem Int Ed Engl 2016; 55:8806-15. [PMID: 27303916 DOI: 10.1002/anie.201602233] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Indexed: 12/13/2022]
Abstract
The past decade has seen a significant increase in interest in the use of polymeric nanocarriers in medical applications. In particular, when used as drug vectors in targeted delivery, nanocarriers could overcome many obstacles for drug therapy. Nevertheless, their application is still impeded by the complex composition of the blood proteins covering the particle surface, termed the protein corona. The protein corona complicates any prediction of cell interactions, biodistribution, and toxicity. In particular, the unspecific uptake of nanocarriers is a major obstacle in clinical studies. This Minireview provides an overview of what we currently know about the characteristics of the protein corona of nanocarriers, with a focus on surface functionalization that reduces unspecific uptake (the stealth effect). The ongoing improvement of nanocarriers to allow them to meet all the requirements necessary for successful application, including targeted delivery and stealth, are further discussed.
Collapse
Affiliation(s)
- Susanne Schöttler
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
15
|
Matea CT, Mocan T, Tabaran F, Iancu C, Mocan LC. Rational design of gold nanocarrier for the delivery of JAG-1 peptide. J Nanobiotechnology 2015; 13:41. [PMID: 26077042 PMCID: PMC4469399 DOI: 10.1186/s12951-015-0100-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Unique properties exhibited by nanoparticles makes them great candidates for applications in physics, chemistry, biology, material science and medicine. The biological applications of water-soluble gold nanoparticles range from contrast agents, delivery vehicles to therapeutics. Notch signaling is a complex network that orchestrates cell fate decisions, which involves proliferation, migration, differentiation and cell death in organisms ranging from insects to humans. Studies have showed that a correct orientation of the Jag-1 signalling protein on the substrates proves to be of great importance when promoting Jagged-1 Notch interactions, also the availability of the ligands, super cedes the importance of their concentration. RESULTS The aim of the present study was to synthetize a Jag-1 functionalized nanocarrier, which would promote an efficient interaction between the Jag-1 peptide and the Notch receptor. To this end, two routes for gold nanoparticle-peptide assembly were investigated, and the synthetized bio-nanostructures were characterized and compared by means of UV-Vis, FT-IR, DLS and AFM techniques. CONCLUSIONS We have obtained a stable, monodisperse, hetero-functionalized GNP-PEG-JAG-1 bio-nanostructure for Notch pathway activation applications.
Collapse
Affiliation(s)
- Cristian T Matea
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Teodora Mocan
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Flaviu Tabaran
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Cornel Iancu
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Lucian-Constantin Mocan
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
16
|
Pereira MC, Arachchige MCM, Reshetnyak YK, Andreev OA. Advanced targeted nanomedicine. J Biotechnol 2015; 202:88-97. [PMID: 25615945 PMCID: PMC4685670 DOI: 10.1016/j.jbiotec.2015.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery has been the major topic in drug formulation and delivery. As nanomedicine emerges to create nano scale therapeutics and diagnostics, it is still essential to embed targeting capability to these novel systems to make them useful. Here we discuss various targeting approaches for delivery of therapeutic and diagnostic nano materials in view of search for more universal methods to target diseased tissues. Many diseases are accompanied with hypoxia and acidosis. Coating nanoparticles with pH Low Insertion Peptides (pHLIPs) increases efficiency of targeting acidic diseased tissues. It has been showing promising results to create future nanotheranostics for cancer and other diseases which are dominating in the present world.
Collapse
Affiliation(s)
| | - Mohan C M Arachchige
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA
| | - Oleg A Andreev
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA.
| |
Collapse
|
17
|
Brun E, Sicard-Roselli C. Could nanoparticle corona characterization help for biological consequence prediction? Cancer Nanotechnol 2014; 5:7. [PMID: 25309635 PMCID: PMC4181791 DOI: 10.1186/s12645-014-0007-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022] Open
Abstract
As soon as they enter a biological medium (cell culture medium for in vitro, blood or plasma for in vivo studies), nanoparticles, in most cases, see their surface covered by biomolecules, especially proteins. What the cells see is thus not the ideal nanoparticle concocted by chemists, meaning the biomolecular corona could have great biological and physiological repercussions, sometimes masking the expected effects of purposely grafted molecules. In this review, we will mainly focus on gold nanoparticles. In the first part, we will discuss the fate of these particles once in a biological medium, especially in terms of size, and the protein composition of the corona. We will highlight the parameters influencing the quantity and the identity of the adsorbed proteins. In a second part, we will resume the main findings about the influence of a biomolecular corona on cellular uptake, toxicity, biodistribution and targeting ability. To be noticed is the need for standardized experiments and very precise reports of the protocols and methods used in the experimental sections to extract informative data. Given the biological consequences of this corona, we suggest that it should be taken into account in theoretical studies dealing with nanomaterials to better represent the biological environment.
Collapse
Affiliation(s)
- Emilie Brun
- Laboratoire de Chimie Physique, CNRS UMR8000, Université Paris-Sud, 91405 Orsay, Cedex France
| | - Cécile Sicard-Roselli
- Laboratoire de Chimie Physique, CNRS UMR8000, Université Paris-Sud, 91405 Orsay, Cedex France
| |
Collapse
|
18
|
Yue HL, Hu YJ, Chen J, Bai AM, Ouyang Y. Green synthesis and physical characterization of Au nanoparticles and their interaction with bovine serum albumin. Colloids Surf B Biointerfaces 2014; 122:107-114. [DOI: 10.1016/j.colsurfb.2014.06.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
19
|
Kah JCY, Grabinski C, Untener E, Garrett C, Chen J, Zhu D, Hussain SM, Hamad-Schifferli K. Protein coronas on gold nanorods passivated with amphiphilic ligands affect cytotoxicity and cellular response to penicillin/streptomycin. ACS NANO 2014; 8:4608-4620. [PMID: 24758495 DOI: 10.1021/nn5002886] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We probe how amphiphilic ligands (ALs) of four different types affect the formation of protein coronas on gold nanorods (NRs) and their impact on cellular response. NRs coated with cetyltrimethylammonium bromide were ligand exchanged with polyoxyethylene[10]cetyl ether, oligofectamine, and phosphatidylserine (PS). Protein coronas from equine serum (ES) were formed on these NR-ALs, and their colloidal stability, as well as cell uptake, proliferation, oxidative stress, and gene expression, were examined. We find that the protein corona that forms and its colloidal stability are affected by AL type and that the cellular response to these NR-AL-coronas (NR-AL-ES) is both ligand and corona dependent. We also find that the presence of common cell culture supplement penicillin/streptomycin can impact the colloidal stability and cellular response of NR-AL and NR-AL-ES, showing that the cell response is not necessarily inert to pen/strep when in the presence of nanoparticles. Although the protein corona is what the cells see, the underlying surface ligands evidently play an important role in shaping and defining the physical characteristics of the corona, which ultimately impacts the cellular response. Further, the results of this study suggest that the cellular behavior toward NR-AL is mediated by not only the type of AL and the protein corona it forms but also its resulting colloidal stability and interaction with cell culture supplements.
Collapse
Affiliation(s)
- James Chen Yong Kah
- Department of Biological Engineering and ‡Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | |
Collapse
|
20
|
High efficacy gold-KDEL peptide-siRNA nanoconstruct-mediated transfection in C2C12 myoblasts and myotubes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:329-37. [DOI: 10.1016/j.nano.2013.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
|
21
|
Dykman LA, Khlebtsov NG. Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 2013; 114:1258-88. [PMID: 24279480 DOI: 10.1021/cr300441a] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | |
Collapse
|
22
|
Sun X, Zhang G, Keynton RS, O'Toole MG, Patel D, Gobin AM. Enhanced drug delivery via hyperthermal membrane disruption using targeted gold nanoparticles with PEGylated Protein-G as a cofactor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1214-22. [PMID: 23603356 DOI: 10.1016/j.nano.2013.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/29/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Gold nanoparticles (GNPs) with near infrared (NIR) plasmon resonance have been promisingly used in photothermal cancer therapy as a less invasive treatment. Recombinant Protein-G (ProG) was PEGylated to act as a cofactor to immobilize immunoglobulins (IgGs) on GNPs by the Fc region, resulting in optimal orientation of IgGs for efficient cancer targeting. In-vitro studies showed that HER-2 overexpressing breast cancer cells, SK-BR-3, were efficiently targeted and ablated at a laser power of 900 J/cm(2) (5 W/cm(2) for 3 min). However, as a means of enhancing treatment efficacy by increasing cellular sensitivity to chemotherapeutic agents, we showed that GNP exposure to lower power laser resulted in small disruptions of cell membrane due to localized hyperthermia. This did not lead to cell death but provided a mechanism for killing cancer cells by providing enhanced uptake of drug molecules thus leading to a new avenue for hyperthermia-anticancer drug combined cancer therapeutics. FROM THE CLINICAL EDITOR PEGylated recombinant Protein-G was used as a cofactor to optimize the orientation of IgGs providing "target seeking" properties to gold nanoparticles used in photothermal cancer therapy. The system demonstrated excellent properties in cancer therapy, with the hope and expectation of future clinical translation.
Collapse
Affiliation(s)
- Xinghua Sun
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zeng X, Zhang Y, Nyström AM. Endocytic uptake and intracellular trafficking of bis-MPA-based hyperbranched copolymer micelles in breast cancer cells. Biomacromolecules 2012; 13:3814-22. [PMID: 23035906 DOI: 10.1021/bm301281k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dendrimers and their less well-defined cousins, hyperbranched polymers, are widely investigated as scaffold materials in tissue engineering, as drug delivery agents, and in diagnostic imaging applications. Despite the large interest of using these unique materials as polymer-based nanoparticles in biomedical applications, a clear understanding of the cellular uptake and transport of these polyester-based nanoparticles is still lacking. The objective of this study is to evaluate the cellular uptake profiles and intracellular trafficking of polymer micelles built from the hyperbranched polyester Boltorn, fitted with poly(ethylene glycol) and fluorescent groups in MDA-MB468 breast cancer cells. Results show that the uptake of these nanoparticles correlated positively to both time and concentration, and that the uptake of the nanoparticles was energy dependent. These polyesterbased nanoparticles appear to translocate across cells via clathrin- and macropinocytosis-mediated endocytosis. Observations of the intracellular trafficking of the nanoparticles indicate that particles could be released from early endosomes after being internalized, and the particles exhibit perinuclear localization. The uptake behavior of the nanoparticles was further evaluated in a range of cell lines. These results allow the generation of the knowledge base required to design polyester-based nanocarriers that can be used efficiently and specifically for drug delivery applications and imaging applications.
Collapse
Affiliation(s)
- Xianghui Zeng
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77, Stockholm, Sweden
| | | | | |
Collapse
|