1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Deng C, Xiao Y, Zhao X, Li H, Chen Y, Ai K, Jiang T, Wei J, Chen X, Lei G, Zeng C. Sequential Targeting Chondroitin Sulfate-Bilirubin Nanomedicine Attenuates Osteoarthritis via Reprogramming Lipid Metabolism in M1 Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411911. [PMID: 39792653 PMCID: PMC11884591 DOI: 10.1002/advs.202411911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation. LCF-CSBN is internalized by M1 macrophages via CD44-mediated endocytosis and targets the Golgi apparatus accompanied with the reactive oxygen species-responsive release of licofelone (LCF, dual inhibitor of arachidonic acid metabolism). LCF-CSBN effectively promotes M1 to M2 macrophage transition by reprogramming the Golgi apparatus-related sphingolipid metabolism and arachidonic acid metabolism. Intra-articularly injected LCF-CSBN retains in the joint for up to 28 days and accumulates into M1 macrophages. Moreover, LCF-CSBN can effectively attenuate joint inflammation, oxidative stress, and cartilage degeneration in OA model rats. These findings indicate the promising potential of lipid-metabolism-reprogramming LCF-CSBN in the targeted therapy of OA.
Collapse
Affiliation(s)
- Caifeng Deng
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yongbing Xiao
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xuan Zhao
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hui Li
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yuxiao Chen
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410008China
| | - Ting Jiang
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jie Wei
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
3
|
Soukar J, Peppas NA, Gaharwar AK. Organelle-Targeting Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411720. [PMID: 39806939 PMCID: PMC11831507 DOI: 10.1002/advs.202411720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects. Nanoparticles are versatile and effective tools for therapeutic delivery to specific organelles. Nanoparticles offer several advantageous characteristics, including a high surface area-to-volume ratio for efficient therapeutic loading and the ability to attach targeting moieties (tethers) that enhance delivery. The choice of nanoparticle shape, size, composition, surface properties, and targeting ligands depends on the desired target organelle and therapeutic effect. Various nanoparticle platforms have been explored for organelle targeting, such as liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles. In this review, current and emerging approaches to nanoparticle design are examined in the context of various diseases linked to organelle dysfunction. Specifically, advances in nanoparticle therapies targeting organelles such as the nucleus, mitochondria, lysosomes/endosomes, Golgi apparatus, and endoplasmic reticulum are comprehensively and critically discussed.
Collapse
Affiliation(s)
- John Soukar
- Interdisiplinary program in Genetics and GenomicsTexas A&M UniversityCollege StationTX77843USA
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Nicholas A. Peppas
- Department of Biomedical EngineeringUniversity of Texas at AustinAustinTX78712USA
- Institute of BiomaterialsDrug Delivery and Regenerative MedicineUniversity of Texas at AustinAustinTX78712USA
- Department of Chemical EngineeringUniversity of Texas at AustinAustinTX78712USA
- Department of Surgery and Perioperative CareDell Medical SchoolUniversity of Texas at AustinAustinTX78712USA
- Department of PediatricsDell Medical SchoolUniversity of Texas at AustinAustinTX78712USA
| | - Akhilesh K. Gaharwar
- Interdisiplinary program in Genetics and GenomicsTexas A&M UniversityCollege StationTX77843USA
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
4
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Mishra T, Sengupta P, Basu S. Biomaterials for Targeting Endoplasmic Reticulum in Cancer. Chem Asian J 2024; 19:e202400250. [PMID: 38602248 DOI: 10.1002/asia.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
Endoplasmic reticulum (ER) is one of the most important sub-cellular organelles which controls myriads of biological functions including protein biosynthesis with proper functional folded form, protein misfolding, protein transport into Golgi body for secretion, Ca2+ homeostasis and so on. Subsequently, dysregulation in ER function leads to ER stress followed by disease pathology like cancer. Hence, targeting ER in the cancer cells emerged as one of the futuristic strategies for cancer treatment. However, the major challenge is to selectively and specifically target ER in the sub-cellular milieu in the cancer tissues, due to the lack of ER targeting chemical moieties to recognize the ER markers. To address this, in the last decade, numerous biomaterials were explored to selectively impair and image ER in cancer cells to induce ER stress. This review outlines those biomaterials which consists of carbon and silicon materials, lipid nanoparticles (liposomes and micelles), supramolecular self-assembled nanostructures, cell membrane-coated nanoparticles and metallic nanoparticles. Moreover, we also discuss the challenges and possible solutions of this promising field to usher the readers towards next-generation ER targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Poulomi Sengupta
- Department of Chemistry, Indrashil University, Rajpur, Kadi, Mehsana, Gujarat, 382740, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
6
|
Zhao Y, Yue P, Peng Y, Sun Y, Chen X, Zhao Z, Han B. Recent advances in drug delivery systems for targeting brain tumors. Drug Deliv 2023; 30:1-18. [PMID: 36597214 PMCID: PMC9828736 DOI: 10.1080/10717544.2022.2154409] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Brain tumor accounts for about 1.6% of incidence and 2.5% of mortality of all tumors, and the median survival for brain tumor patients is only about 20 months. The treatment for brain tumor still faces many challenges, such as the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), the overexpressed efflux pumps, the infiltration, invasion, high heterogeneity of tumor cells, drug resistance and immune escape caused by tumor microenvironment (TME) and cancer stem cells (CSC). This review attempts to clarify the challenges for multi-functional nano drug delivery systems (NDDS) to cross the BBB and target the cancer cells or organelles, and also provides a brief description of the different types of targeted multi-functional NDDS that have shown potential for success in delivering drugs to the brain. Further, this review also summarizes the research progress of multi-functional NDDS in the combination therapy of brain tumors from the following sections, the combination of chemotherapy drugs, chemotherapy-chemodynamic combination therapy, chemotherapy-immunization combination therapy, and chemotherapy-gene combination therapy. We also provide an insight into the recent advances in designing multi-functional NDDS for combination therapy.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,CONTACT Yi Zhao
| | - Ping Yue
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Yao Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ze Zhao
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People’s Hospital of Jiaozuo City), Jiaozuo, China,Ze Zhao
| | - Bingjie Han
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Bingjie Han
| |
Collapse
|
7
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 217] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery. RESEARCH (WASHINGTON, D.C.) 2023; 6:0148. [PMID: 37250954 PMCID: PMC10208951 DOI: 10.34133/research.0148] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chong Qiu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital,
Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| |
Collapse
|
9
|
Victor-Lovelace TW, Miller LM. The development and use of metal-based probes for X-ray fluorescence microscopy. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6852953. [PMID: 36537552 DOI: 10.1093/mtomcs/mfac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
X-ray fluorescence microscopy (XFM) has become a widely used technique for imaging the concentration and distribution of metal ions in cells and tissues. Recent advances in synchrotron sources, optics, and detectors have improved the spatial resolution of the technique to <10 nm with attogram detection sensitivity. However, to make XFM most beneficial for bioimaging-especially at the nanoscale-the metal ion distribution must be visualized within the subcellular context of the cell. Over the years, a number of approaches have been taken to develop X-ray-sensitive tags that permit the visualization of specific organelles or proteins using XFM. In this review, we examine the types of X-ray fluorophore used, including nanomaterials and metal ions, and the approaches used to incorporate the metal into their target binding site via antibodies, genetically encoded metal-binding peptides, affinity labeling, or cell-specific peptides. We evaluate their advantages and disadvantages, review the scientific findings, and discuss the needs for future development.
Collapse
Affiliation(s)
| | - Lisa M Miller
- N ational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973,USA.,Department of Chemistry, Stony Brook University, Stony Brook, NY 11794,USA
| |
Collapse
|
10
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
11
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
12
|
Shi Y, Luo Z, You J. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1803. [PMID: 35441489 DOI: 10.1002/wnan.1803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Primarily responsible for the biogenesis and metabolism of biomolecules, endoplasmic reticulum (ER) and mitochondria are gradually becoming the targets of therapeutic modulation, whose physiological activities and pathological manifestations determine the functional capacity and even the survival of cells. Drug delivery systems with specific physicochemical properties (passive targeting), or modified by small molecular compounds, polypeptides, and biomembranes demonstrating tropism for ER and mitochondria (active targeting) are able to reduce the nonselective accumulation of drugs, enhancing efficacy while reducing side effects. Lipid nanoparticles feature high biocompatibility, diverse cargo loading, and flexible structure modification, which are frequently used for subcellular organelle-targeted delivery of therapeutics. However, there is still a lack of systematic understanding of lipid nanoparticle-based ER and mitochondria targeting. Herein, we review the pathological significance of drug selectively delivered to the ER and mitochondria. We also summarize the molecular basis and application prospects of lipid nanoparticle-based ER and mitochondria targeting strategies, which may provide guidance for the prevention and treatment of associated diseases and disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
AIEgen-Peptide Bioprobes for the Imaging of Organelles. BIOSENSORS 2022; 12:bios12080667. [PMID: 36005064 PMCID: PMC9406086 DOI: 10.3390/bios12080667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023]
Abstract
Organelles are important subsystems of cells. The damage and inactivation of organelles are closely related to the occurrence of diseases. Organelles’ functional activity can be observed by fluorescence molecular tools. Nowadays, a series of aggregation-induced emission (AIE) bioprobes with organelles-targeting ability have emerged, showing great potential in visualizing the interactions between probes and different organelles. Among them, AIE luminogen (AIEgen)-based peptide bioprobes have attracted more and more attention from researchers due to their good biocompatibility and photostability and abundant diversity. In this review, we summarize the progress of AIEgen-peptide bioprobes in targeting organelles, including the cell membrane, nucleus, mitochondria, lysosomes and endoplasmic reticulum, in recent years. The structural characteristics and biological applications of these bioprobes are discussed, and the development prospect of this field is forecasted. It is hoped that this review will provide guidance for the development of AIEgen-peptide bioprobes at the organelles level and provide a reference for related biomedical research.
Collapse
|
14
|
KDEL Receptors: Pathophysiological Functions, Therapeutic Options, and Biotechnological Opportunities. Biomedicines 2022; 10:biomedicines10061234. [PMID: 35740256 PMCID: PMC9220330 DOI: 10.3390/biomedicines10061234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
KDEL receptors (KDELRs) are ubiquitous seven-transmembrane domain proteins encoded by three mammalian genes. They bind to and retro-transport endoplasmic reticulum (ER)-resident proteins with a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence or variants thereof. In doing this, KDELR participates in the ER quality control of newly synthesized proteins and the unfolded protein response. The binding of KDEL proteins to KDELR initiates signaling cascades involving three alpha subunits of heterotrimeric G proteins, Src family kinases, protein kinases A (PKAs), and mitogen-activated protein kinases (MAPKs). These signaling pathways coordinate membrane trafficking flows between secretory compartments and control the degradation of the extracellular matrix (ECM), an important step in cancer progression. Considering the basic cellular functions performed by KDELRs, their association with various diseases is not surprising. KDELR mutants unable to bind the collagen-specific chaperon heat-shock protein 47 (HSP47) cause the osteogenesis imperfecta. Moreover, the overexpression of KDELRs appears to be linked to neurodegenerative diseases that share pathological ER-stress and activation of the unfolded protein response (UPR). Even immune function requires a functional KDELR1, as its mutants reduce the number of T lymphocytes and impair antiviral immunity. Several studies have also brought to light the exploitation of the shuttle activity of KDELR during the intoxication and maturation/exit of viral particles. Based on the above, KDELRs can be considered potential targets for the development of novel therapeutic strategies for a variety of diseases involving proteostasis disruption, cancer progression, and infectious disease. However, no drugs targeting KDELR functions are available to date; rather, KDELR has been leveraged to deliver drugs efficiently into cells or improve antigen presentation.
Collapse
|
15
|
Xiang Y, Chen L, Liu C, Yi X, Li L, Huang Y. Redirecting Chemotherapeutics to the Endoplasmic Reticulum Increases Tumor Immunogenicity and Potentiates Anti-PD-L1 Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104591. [PMID: 34859582 DOI: 10.1002/smll.202104591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) in cancer cells has been considered as a pharmacological target. Still, the effects of a ER-targeted system remain less investigated, due to the fact that most chemo-drugs take actions in the nucleus. Here, it is demonstrated that ER-targeted delivery of doxorubicin (DOX), a typically nucleus-tropic-and-acting agent, attenuates its original effect on cytotoxicity while generating new functions favorable for immune activation. First, a library of DOX derivatives with variable ER-targeting abilities is synthesized. The results reveal that higher ER-targeting efficiency correlates with greater ER stress. As compared with naïve drug, ER-targeted DOX considerably alters the mode of action from nuclear DNA damage-associated cytotoxicity to ER stress-mediated calreticulin exposure. Consequently, ER-targeted DOX decreases cytotoxicity but increases the capability to induce immunogenic cell death (ICD). Therefore, a platform combining naïve and ER-targeted DOX is constructed for in vivo application. Conventional polymer-DOX conjugate inhibits tumor growth by exerting a direct killing effect, and ER-targeted polymer-DOX conjugate suppresses residual tumors by eliciting ICD-associated immunity, together resulting in considerable tumor regression. In addition, simultaneous inhibition of adaptive PD-L1 enrichment (due to negative-feedback to ICD induction) further leads to greater therapeutic outcome. Collectively, ER-targeted therapy can enhance anticancer efficacy by promoting ICD-associated immunotherapy, and potentiating chemotherapy and checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yucheng Xiang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Liqiang Chen
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Chendong Liu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Xiaoli Yi
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Lian Li
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| | - Yuan Huang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu, 610041, P. R. China
| |
Collapse
|
16
|
Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release 2022; 342:241-279. [PMID: 35016918 PMCID: PMC8743282 DOI: 10.1016/j.jconrel.2022.01.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
RNA-based therapy is a promising and potential strategy for disease treatment by introducing exogenous nucleic acids such as messenger RNA (mRNA), small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides (ASO) to modulate gene expression in specific cells. It is exciting that mRNA encoding the spike protein of COVID-19 (coronavirus disease 2019) delivered by lipid nanoparticles (LNPs) exhibits the efficient protection of lungs infection against the virus. In this review, we introduce the biological barriers to RNA delivery in vivo and discuss recent advances in non-viral delivery systems, such as lipid-based nanoparticles, polymeric nanoparticles, N-acetylgalactosamine (GalNAc)-siRNA conjugate, and biomimetic nanovectors, which can protect RNAs against degradation by ribonucleases, accumulate in specific tissue, facilitate cell internalization, and allow for the controlled release of the encapsulated therapeutics.
Collapse
Affiliation(s)
- Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiao-Yu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiang-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lin-Xia Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China..
| |
Collapse
|
17
|
Mitochondrial Targeting Probes, Drug Conjugates, and Gene Therapeutics. Methods Mol Biol 2021. [PMID: 34766305 DOI: 10.1007/978-1-0716-1752-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mitochondria represent an important drug target for many phatology, including neurodegeneration, metabolic disease, heart failure, ischemia-reperfusion injury, and cancer. Mitochondrial dysfunctions are caused by mutation in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins. Cell-penetrating peptides (CPPs) have been employed to overcome biological barriers, target this organelle, and therapeuticaly restore mitochondrial functions. Here, we describe recent methods used to deliver oligonucleotides targeting mitochondrial protein by using mitochondrial penetrating peptides. In particular, we highlight recent advances of formulated peptides/oligonucleotides nanocomplexes as a proof-of-principle for pharmaceutical form of peptide-based therapeutics.
Collapse
|
18
|
Qiao L, Shao X, Gao S, Ming Z, Fu X, Wei Q. Research on endoplasmic reticulum-targeting fluorescent probes and endoplasmic reticulum stress-mediated nanoanticancer strategies: A review. Colloids Surf B Biointerfaces 2021; 208:112046. [PMID: 34419809 DOI: 10.1016/j.colsurfb.2021.112046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 01/18/2023]
Abstract
Subcellular localization of organelles can achieve accurate drug delivery and maximize drug efficacy. As the largest organelle in eukaryotic cells, the endoplasmic reticulum (ER) plays an important role in protein synthesis, folding, and posttranslational modification; lipid biosynthesis; and calcium homeostasis. Observing the changes in various metal ions, active substances, and the microenvironment in the ER is crucial for diagnosing and treating many diseases, including cancer. Excessive endoplasmic reticulum stress (ERS) can have a killing effect on malignant cells and can mediate cell apoptosis, proper modulation of ERS can provide new perspectives for the treatment of many diseases, including cancer. Therefore, the ER is used as a new anticancer target in cancer treatment. This review discusses ER-targeting fluorescent probes and ERS-mediated nanoanticancer strategies.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xinxin Shao
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shijie Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zheng Ming
- International Office, Shandong University of Traditional Chinese Medicine, PR China
| | - Xianjun Fu
- Laboratory of Traditional Chinese Medicine Network Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
19
|
Essawy MM, El-Sheikh SM, Raslan HS, Ramadan HS, Kang B, Talaat IM, Afifi MM. Function of gold nanoparticles in oral cancer beyond drug delivery: Implications in cell apoptosis. Oral Dis 2021; 27:251-265. [PMID: 32657515 DOI: 10.1111/odi.13551] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Gold nanoparticles (AuNPs) are used to deliver drugs and therapeutic small molecule inhibitors to cancer cells. Evidence shows that AuNPs coated with nuclear localization sequence can cross the nuclear membrane and induce cellular apoptosis. To determine the therapeutic role of AuNPs, we compared two nanoconstructs conjugated to doxorubicin (DOX) through pH-sensitive and pH-resistant linkers. MATERIALS AND METHODS We tested DOX nanoconjugates' cytotoxicity, cellular and nuclear uptake in oral squamous cell carcinoma cell line. Furthermore, we evaluated the therapeutic effect of pH-sensitive and pH-resistant DOX bioconjugates in hamster buccal pouch carcinoma model. RESULTS Our data indicate that pH-resistant and pH-sensitive DOX-nanoconjugates were equally localized in cancer cells, but the pH-resistant DOX nanoparticles were more localized in the nuclei inducing a 2-fold increase in the apoptotic effect compared with the pH-sensitive DOX nanoparticles. Our in vivo results show significantly higher tumor shrinkage and survival rates in animals treated with DOX pH-resistant AuNPs compared with pH-sensitive ones. CONCLUSION Our findings suggest that AuNPs enhance the cytotoxic effect against cancer cells in addition to acting as drug carriers. DOX pH-resistant AuNPs enhanced accumulation of AuNPs in cancer cells' nuclei inducing a significant cellular apoptosis which was confirmed using in vitro and in vivo experiments without deleterious effects on blood cell count.
Collapse
Affiliation(s)
- Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | - Sahar M El-Sheikh
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Egypt
| | - Hanaa S Raslan
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Egypt
| | - Heba S Ramadan
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Egypt
| | - Bin Kang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Iman M Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, UAE
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Marwa M Afifi
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Egypt
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Abstract
Currently, peptide-nanoparticle (NP) conjugates have been demonstrated to be efficient and powerful tools for the treatment and the diagnosis of various diseases as well as in the bioimaging application. Several bioconjugation strategies have been adopted to formulate the peptide-NP conjugates. In this review, we discuss the exciting applications of peptide-gold (Au) NP conjugates in the area of drug delivery, targeting, cancer therapy, brain diseases, vaccines, immune modulation, biosensor, colorimetric detection of heavy metals, and bio-labeling in vitro and in vivo models. Within this framework, various approaches such as radiotherapy, photothermal therapy, photodynamic therapy and chemo-photothermal therapy have been demonstrated for the treatment of several diseases. Moreover, we highlight how the morphology, size, density of peptide and the protein corona influence the biological activity, biodistribution and biological fate of peptide-AuNP conjugates. In the end, we discuss the future outlook and the challenges being faced in the clinical translation of the peptide-AuNP conjugates. Overall, this review emphasizes that the peptide-AuNP conjugates might be used as potential theranostic agents for the treatment of life-threatening diseases in an economical fashion in the future.
Collapse
Affiliation(s)
- Akhilesh Rai
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020; 22:3. [PMID: 33221968 PMCID: PMC7680634 DOI: 10.1208/s12249-020-01873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sadia Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Humaira Sultan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Faiz Ahmad
- Departments of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Nadia Rai
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
22
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
23
|
Jerath G, Goyal R, Trivedi V, Santhoshkumar TR, Ramakrishnan V. Conformationally constrained peptides for drug delivery. J Pept Sci 2020; 26:e3244. [PMID: 32128940 DOI: 10.1002/psc.3244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Peptides have shown great potential in acting as template for developing versatile carrier platforms in nanomedicine, aimed at selective delivery of drugs to only pathological tissues saving its normal neighbors. Cell-penetrating peptides (CPPs) are short oligomeric peptides capable of translocating across the cell membrane while simultaneously employing multiple mechanisms of entry. Most CPPs exist as disordered structures in solution and may adopt a helical conformation on interaction with cell membrane, vital to their penetrative capability. Herein, we report a series of cationic helical amphipathic peptides (CHAPs), which are topologically constrained to be helical. The peptides were tested against cervical and breast cancer cells for their cell penetration and drug delivery potential. The cellular uptake of CHAP peptides is independent of temperature and energy availability. The activity of the peptides is biocompatible in bovine serum. CHAPs delivered functional methotrexate (MTX) inside the cell as CHAP-MTX conjugates. CHAP-MTX conjugates were more toxic to cancer cells than MTX alone. However, the CHAP-MTX conjugates were less toxic to HEK-293 cells compared with the cancer cells suggesting higher affinity towards cancer cells.
Collapse
Affiliation(s)
- Gaurav Jerath
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ruchika Goyal
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Vibin Ramakrishnan
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
24
|
Abstract
The RNA interference (RNAi) pathway regulates mRNA stability and translation in nearly all human cells. Small double-stranded RNA molecules can efficiently trigger RNAi silencing of specific genes, but their therapeutic use has faced numerous challenges involving safety and potency. However, August 2018 marked a new era for the field, with the US Food and Drug Administration approving patisiran, the first RNAi-based drug. In this Review, we discuss key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.
Collapse
|
25
|
Li H, Zhang P, Luo J, Hu D, Huang Y, Zhang ZR, Fu Y, Gong T. Chondroitin Sulfate-Linked Prodrug Nanoparticles Target the Golgi Apparatus for Cancer Metastasis Treatment. ACS NANO 2019; 13:9386-9396. [PMID: 31375027 DOI: 10.1021/acsnano.9b04166] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metastasis is a multistep biological process regulated by multiple signaling pathways. The integrity of the Golgi apparatus plays an important role in these signaling pathways. Inspired by the mechanism and our previous finding about accumulation of chondroitin sulfate in Golgi apparatus in hepatic stellate cells, we developed a Golgi apparatus-targeting prodrug nanoparticle system by synthesizing retinoic acid (RA)-conjugated chondroitin sulfate (CS) (CS-RA). The prodrug nanoparticles appeared to accumulate in the Golgi apparatus in cancer cells and realized RA release under an acidic environment. We confirmed that CS-RA exhibited successful inhibition of multiple metastasis-associated proteins expression in vitro and in vivo by disruption of the Golgi apparatus structure. Following loading with paclitaxel (PTX), the CS-RA based nanoformulation (PTX-CS-RA) inhibited migration, invasion, and angiogenesis in vitro and suppressed tumor growth and metastasis in 4T1-Luc bearing mice. This multistep targeted nanoparticle system potentially enhanced the effect of antimetastasis combined with chemotherapy.
Collapse
Affiliation(s)
- Haohuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Pei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Jingwen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Danrong Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
26
|
Qiu C, Han HH, Sun J, Zhang HT, Wei W, Cui SH, Chen X, Wang JC, Zhang Q. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes. Nat Commun 2019; 10:2702. [PMID: 31221991 PMCID: PMC6586638 DOI: 10.1038/s41467-019-10562-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Most cationic vectors are difficult to avoid the fate of small interfering RNA (siRNA) degradation following the endosome-lysosome pathway during siRNA transfection. In this study, the endoplasmic reticulum (ER) membrane isolated from cancer cells was used to fabricate an integrative hybrid nanoplexes (EhCv/siRNA NPs) for improving siRNA transfection. Compared to the undecorated Cv/siEGFR NPs, the ER membrane-decorated EhCv/siRNA NPs exhibits a significantly higher gene silencing effect of siRNA in vitro and a better antitumor activity in nude mice bearing MCF-7 human breast tumor in vivo. Further mechanistic studies demonstrate that functional proteins on the ER membrane plays important roles on improving cellular uptake and altering intracellular trafficking pathway of siRNA. It is worth to believe that the ER membrane decoration on nanoplexes can effectively transport siRNA through the endosome-Golgi-ER pathway to evade lysosomal degradation and enhance the silencing effects of siRNA.
Collapse
Affiliation(s)
- Chong Qiu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Hu-Hu Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jing Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Hai-Tao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, 410013, Changsha, China
| | - Wei Wei
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Shi-He Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Xin Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| |
Collapse
|
27
|
Strategies in the design of gold nanoparticles for intracellular targeting: opportunities and challenges. Ther Deliv 2017; 8:879-897. [DOI: 10.4155/tde-2017-0049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With unique physicochemical properties, gold nanoparticles (Au NPs) have demonstrated their potential as drug carriers or therapeutic agents. Effective guidance of Au NPs into specific intracellular destinations becomes increasingly important as we strive to further improve the efficiency of drug delivery and modulate controllable cellular responses. In this review, we summarized recent advances in designing Au NPs with the capabilities of cellular penetration and internalization, endosomal escape, intracellular trafficking and subcellular localization via various approaches including physical injection, tuning the physiochemical parameters of Au NPs, and surface modification with targeting ligands. Strategies for delivering Au NPs to specific subcellular destinations including the nucleus, mitochondria, endoplasmic reticulum, lysosomes are also discussed. Moreover, current challenges associated with intracellular targeting of Au NPs are discussed with future perspectives proposed.
Collapse
|
28
|
Sauvage F, Messaoudi S, Fattal E, Barratt G, Vergnaud-Gauduchon J. Heat shock proteins and cancer: How can nanomedicine be harnessed? J Control Release 2017; 248:133-143. [PMID: 28088573 DOI: 10.1016/j.jconrel.2017.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022]
Abstract
Heat shock protein (hsp90) is an interesting target for cancer therapy because it is involved in the folding and stabilization of numerous proteins, including many that contribute to the development of cancer. It is part of the chaperone machinery that includes other heat shock proteins (hsp70, hsp27, hsp40) and is mainly localized in the cytosol, although many analogues or isoforms can be found in mitochondrion, endoplasmic reticulum and the cell membrane. Many potential inhibitors of hsp90 have been tested for cancer therapy but their usefulness is limited by their poor solubility in water and their ability to reach the target cells and the correct intracellular compartment. Nanomedicine, the incorporation of active molecules into an appropriate delivery system, could provide a solution to these drawbacks. In this review, we explain the rationale for using nanomedicine for this sort of cancer therapy, considering the properties of the chaperone machinery and of the different hsp90 analogues. We present some results that have already been obtained and put forward some strategies for delivery of hsp90 analogues to specific organelles.
Collapse
Affiliation(s)
- Félix Sauvage
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Samir Messaoudi
- BioCIS-UMR 8076, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Gillian Barratt
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Juliette Vergnaud-Gauduchon
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France.
| |
Collapse
|
29
|
Lin W, Zheng X, Wang H, Yu L, Zhou X, Sun Y, Zhao S, Du Z, Zhang K. Purification and characterization of a novel cell-penetrating carrier similar to cholera toxin chimeric protein. Protein Expr Purif 2017; 129:128-134. [DOI: 10.1016/j.pep.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 12/01/2022]
|
30
|
Ma X, Gong N, Zhong L, Sun J, Liang XJ. Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials 2016; 97:10-21. [DOI: 10.1016/j.biomaterials.2016.04.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
|
31
|
Caldwell ST, Cairns AG, Olson M, Chalmers S, Sandison M, Mullen W, McCarron JG, Hartley RC. Synthesis of an azido-tagged low affinity ratiometric calcium sensor. Tetrahedron 2015; 71:9571-9578. [PMID: 26709317 PMCID: PMC4660056 DOI: 10.1016/j.tet.2015.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in high localised concentrations of Ca2+ ions are fundamental to cell signalling. The synthesis of a dual excitation, ratiometric calcium ion sensor with a Kd of 90 μM, is described. It is tagged with an azido group for bioconjugation, and absorbs in the blue/green and emits in the red region of the visible spectrum with a large Stokes shift. The binding modulating nitro group is introduced to the BAPTA core prior to construction of a benzofuran-2-yl carboxaldehyde by an allylation–oxidation–cyclisation sequence, which is followed by condensation with an azido-tagged thiohydantoin. The thiohydantoin unit has to be protected with an acetoxymethyl (AM) caging group to allow CuAAC click reaction and incorporation of the KDEL peptide endoplasmic reticulum (ER) retention sequence.
Collapse
Affiliation(s)
- Stuart T Caldwell
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew G Cairns
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marnie Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mairi Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
32
|
Pereira MC, Arachchige MCM, Reshetnyak YK, Andreev OA. Advanced targeted nanomedicine. J Biotechnol 2015; 202:88-97. [PMID: 25615945 PMCID: PMC4685670 DOI: 10.1016/j.jbiotec.2015.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery has been the major topic in drug formulation and delivery. As nanomedicine emerges to create nano scale therapeutics and diagnostics, it is still essential to embed targeting capability to these novel systems to make them useful. Here we discuss various targeting approaches for delivery of therapeutic and diagnostic nano materials in view of search for more universal methods to target diseased tissues. Many diseases are accompanied with hypoxia and acidosis. Coating nanoparticles with pH Low Insertion Peptides (pHLIPs) increases efficiency of targeting acidic diseased tissues. It has been showing promising results to create future nanotheranostics for cancer and other diseases which are dominating in the present world.
Collapse
Affiliation(s)
| | - Mohan C M Arachchige
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA
| | - Oleg A Andreev
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA.
| |
Collapse
|
33
|
Field LD, Delehanty JB, Chen Y, Medintz IL. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis? Acc Chem Res 2015; 48:1380-90. [PMID: 25853734 DOI: 10.1021/ar500449v] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interfacing of nanomaterials and especially nanoparticles within all aspects of biological research continues to grow at a nearly unabated pace with projected applications focusing on powerful new tools for cellular labeling, imaging, and sensing, theranostic materials, and drug delivery. At the most fundamental level, many of these nanoparticles are meant to target not only very specific cell-types, regardless of whether they are in a culture, tissue, an animal model, or ultimately a patient, but also in many cases a specific subcellular organelle. During this process, these materials will undergo a complex journey that must first find the target cell of interest, then be taken up by those cells across the extracellular membrane, and ultimately localize to a desired subcellular organelle, which may include the nucleus, plasma membrane, endolysosomal system, mitochondria, cytosol, or endoplasmic reticulum. To accomplish these complex tasks in the correct sequence, researchers are increasingly interested in selecting for and exploiting targeting peptides that can impart the requisite capabilities to a given nanoparticle construct. There are also a number of related criteria that need careful consideration for this undertaking centering on the nature and properties of the peptide vector itself, the peptide-nanoparticle conjugate characteristics, and the target cell. Here, we highlight some important issues and key research areas related to this burgeoning field. We begin by providing a brief overview of some criteria for optimal attachment of peptides to nanoparticles, the predominant methods by which nanoparticles enter cells, and some of the peptide sequences that have been utilized to facilitate nanoparticle delivery to cells focusing on those that engender the initial targeting and uptake. Because almost all materials delivered to cells by peptides utilize the endosomal system of vesicular transport and in many cases remain sequestered within the vesicles, we critically evaluate the issue of endosomal escape in the context of some recently reported successes in this regard. Following from this, peptides that have been reported to deliver nanoparticles to specific subcellular compartments are examined with a focus on what they delivered and the putative mechanisms by which they were able to accomplish this. The last section focuses on two areas that are critical to realizing this overall approach in the long term. The first is how to select for peptidyl sequences capable of improved or more specific cellular or subcellular targeting based upon principles commonly associated with drug discovery. The second looks at what has been done to create modular peptides that incorporate multiple desirable functionalities within a single, contiguous sequence. This provides a viable alternative to either the almost insurmountable challenge of finding one sequence capable of all functions or, alternatively, attaching different peptides with different functionalities to the same nanoparticle in different ratios when trying to orchestrate their net effects. Finally, we conclude with a brief perspective on the future evolution and broader impact of this growing area of bionanoscience.
Collapse
Affiliation(s)
- Lauren D. Field
- Center for Bio/Molecular Science and Engineering,
Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
- Fischell Department of Bioengineering, 2330 Kim Engineering Building, University of Maryland, College Park, Maryland 20742, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering,
Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - YungChia Chen
- Center for Bio/Molecular Science and Engineering,
Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
- American Society for Engineering Education Washington, D.C. 20036, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering,
Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| |
Collapse
|
34
|
High efficacy gold-KDEL peptide-siRNA nanoconstruct-mediated transfection in C2C12 myoblasts and myotubes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:329-37. [DOI: 10.1016/j.nano.2013.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
|
35
|
Andersen H, Parhamifar L, Moein Moghimi S. Uptake and Intracellular Trafficking of Nanocarriers. INTRACELLULAR DELIVERY II 2014. [DOI: 10.1007/978-94-017-8896-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Dykman LA, Khlebtsov NG. Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 2013; 114:1258-88. [PMID: 24279480 DOI: 10.1021/cr300441a] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | |
Collapse
|