1
|
Xu S, Yu Y, Zhang B, Zhu K, Cheng Y, Zhang T. Boron carbide nanoparticles for boron neutron capture therapy. RSC Adv 2025; 15:10717-10730. [PMID: 40196817 PMCID: PMC11973571 DOI: 10.1039/d5ra00734h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Boron agent is widely accepted as one of the most important factors in boron neutron capture therapy (BNCT). In this study, boron carbide (B4C) nanoparticles were subjected to chemical modification, with the folic acid moiety linked to the surface of the particles by varying the segments of the covalent linker polyethylene glycol (PEG) through γ-aminopropyltriethoxysilane (APTES) functionalization. The resultant products were three boron agents, termed as B4C-APTES-FA, B4C-APTES-PEG2K-FA, and B4C-APTES-PEG5K-FA. A comparison was made between these products and the pristine B4C nanoparticles by investigating their physicochemical properties and biological performances, including hemolysis, cytotoxicity, and cellular uptake. Subsequently, the modified B4C-APTES-PEG2K-FA nanoparticles were subjected to in vivo safety assays and biodistribution investigations in mice at various dosages. Upon characterization using ICP-OES, it was found that the boron contents were the highest in the lungs, followed by the liver, spleen, kidneys, hearts, and tumors, and the lowest in the brain and muscles. The boron content in the tumor reached as high as 50 μg per g of dried tissue weight after 24 h of intravenous injection (I.V.), while the tumor-to-muscle and tumor-to-brain ratios of boron contents were found to exceed 3 following 24 hours of intravenous injection. These findings suggest that B4C nanoparticles are promising for BNCT owing to their high boron content, satisfactory biocompatibility, and abundant chemical modification sites.
Collapse
Affiliation(s)
- Shiwei Xu
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Ying Yu
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Boyu Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Kejia Zhu
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
| | - Tao Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
- MOE Key Laboratory of High-Performance Polymer Materials and Technology, Nanjing University Nanjing 210023 China
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
- School of Engineering, Qinghai Institute of Technology Xining 810016 China
| |
Collapse
|
2
|
Ahmad F. Boron Nanocomposites for Boron Neutron Capture Therapy and in Biomedicine: Evolvement and Challenges. Biomater Res 2025; 29:0145. [PMID: 40008112 PMCID: PMC11850861 DOI: 10.34133/bmr.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer remains a major concern for human health worldwide. To fight the curse of cancer, boron neutron capture therapy is an incredibly advantageous modality in the treatment of cancer as compared to other radiotherapies. Due to tortuous vasculature in and around tumor regions, boron (10B) compounds preferentially house into tumor cells, creating a large dose gradient between the highly mingled cancer cells and normal cells. Epithermal or thermal neutron bombardment leads to tumor-cell-selective killing due to the generation of heavy particles yielded from in situ fission reaction. However, the major challenges for boron nanocomposites' development have been from the synthesis part as well as the requirement for selective cancer targeting and the delivery of therapeutic concentrations of boron (10B) with nominal healthy tissue accumulation and retention. To circumvent the above challenges, this review discusses boride nanocomposite design, safety, and biocompatibility for biomedical applications for general public use. This review sparks interest in using boron nanocomposites as boron neutron capture therapy agents and repurposing them in comorbidity treatments, with future scientific challenges and opportunities, with a hope to accelerate the stimulus of developing possible boron composite nanomedicine research and applications worldwide.
Collapse
Affiliation(s)
- Farooq Ahmad
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
3
|
Poyraz FS, Ugraskan V, Mansuroglu B, Yazici O. Investigation of cytotoxic antiproliferative and antiapoptotic effects of nanosized boron phosphate filled sodium alginate composite on glioblastoma cancer cells. Mol Biol Rep 2023; 50:10257-10270. [PMID: 37934369 DOI: 10.1007/s11033-023-08862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The effects of nanosized boron phosphate-filled sodium alginate composite gel (SA/BP) on the biological characteristics of three types of glioblastoma multiforme (GBM) cells (C6, U87MG and T98G) were examined in this study. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay was used to determine the cytotoxicity of the composite gel on GBM, which was then compared to L929 healthy cells. Furthermore, wound healing, apoptosis, and colony formation capacities were evaluated. The investigation revealed that the SA/BP composite gel was successful in all GBM cells and could be used as a treatment agent for GBM and/or other invasive cancer types. METHODS AND RESULTS According to the results, the SA/BP composite gel had no effect on healthy fibroblast cells but had a lethal effect on all glioblastoma cells. Additionally, the wound healing method was used to examine the effect of the SA/BP composite gel on cell migration. It was discovered that the wound closed in 24 h in untreated control group cells, while the SA/BP composite gel closed up to 29.62%, 26.77% and 11.31% of the wound for C6, U87MG and T98G cell lines respectively. SA/BP significantly reduced cell migration in cancer cells. The effect of the generated SA/BP composite gel on cell colony development was assessed using a colony formation assay, and the cells reduced colony formation for all GBMs. It was roughly 45% for 24 h and 30% for 48 h when compared to the control group for C6 cells, 33%(24 h) and 40%(48 h) for U87MG cells, 40%(24 h) and 43%(48 h) for T98G cells. DAPI(4',6-Diamidino-2-phenylindole) and JC-1(5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide) staining to evaluate apoptosis revealed that the SA/BP composite gel dramatically enhanced the frequency of all GBMs undergoing apoptosis. CONCLUSIONS In line with experimental findings, it was observed that the SA/BP composite gel system did not affect healthy fibroblast cells but had a cytotoxic effect on glioblastoma cells, significantly reduced cell migration and colony-forming capacity of cells, and significantly increased apoptosis and depolarization of cell membranes. Based on all these findings, it can be said that SA/BP composite gel has cytotoxic, antiproliferative and antiapoptotic effects on different glioblastoma cells.
Collapse
Affiliation(s)
- Fatma Sayan Poyraz
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye.
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| | - Ozlem Yazici
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| |
Collapse
|
4
|
Yekani M, Azargun R, Sharifi S, Sadri Nahand J, Hasani A, Ghanbari H, Sadat Seyyedi Z, Memar MY, Maleki Dizaj S. Preparation, Physicochemical Characterization, Antimicrobial Effects, Biocompatibility and Cytotoxicity of Co-Loaded Meropenem and Vancomycin in Mesoporous Silica Nanoparticles. Biomedicines 2023; 11:3075. [PMID: 38002075 PMCID: PMC10669092 DOI: 10.3390/biomedicines11113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNPs) have been reported as an effective system to co-deliver a variety of different agents to enhance efficiency and improve biocompatibility. This study was aimed at the preparation, physicochemical characterization, antimicrobial effects, biocompatibility, and cytotoxicity of vancomycin and meropenem co-loaded in the mesoporous silica nanoparticles (Van/Mrp-MSNPs). The prepared nanoparticles were explored for their physicochemical features, antibacterial and antibiofilm effects, biocompatibility, and cytotoxicity. The minimum inhibitory concentrations (MICs) of the Van/Mrp-MSNPs (0.12-1 µg/mL) against Staphylococcus aureus isolates were observed to be lower than those of the same concentrations of vancomycin and meropenem. The minimum biofilm inhibitory concentration (MBIC) range of the Van/Mrp-MSNPs was 8-64 μg/mL, which was lower than the meropenem and vancomycin MBICs. The bacterial adherence was not significantly decreased upon exposure to levels lower than the MICs of the MSNPs and Van/Mrp-MSNPs. The viability of NIH/3T3 cells treated with serial concentrations of the MSNPs and Van/Mrp-MSNPs were 73-88% and 74-90%, respectively. The Van/Mrp-MSNPs displayed considerable inhibitory effects against MRSA, favorable biocompatibility, and low cytotoxicity. The Van/Mrp-MSNPs could be a potential system for the treatment of infections.
Collapse
Affiliation(s)
- Mina Yekani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 87137-83976, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan 87137-83976, Iran
| | - Robab Azargun
- Medicinal Plants Research Center, Maragheh University of Medical Science, Maragheh 55158-78151, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran;
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Alka Hasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Hadi Ghanbari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran;
| | - Zahra Sadat Seyyedi
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 87137-83976, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran;
| |
Collapse
|
5
|
Oloo SO, Smith KM, Vicente MDGH. Multi-Functional Boron-Delivery Agents for Boron Neutron Capture Therapy of Cancers. Cancers (Basel) 2023; 15:3277. [PMID: 37444386 DOI: 10.3390/cancers15133277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary cancer treatment that involves the irradiation of 10B-containing tumors with low-energy neutrons (thermal or epithermal). The alpha particles and recoiling Li nuclei that are produced in the 10B-capture nuclear reaction are high-linear-energy transfer particles that destroy boron-loaded tumor cells; therefore, BNCT has the potential to be a localized therapeutic modality. Two boron-delivery agents have been used in clinical trials of BNCT in patients with malignant brain tumors, cutaneous melanoma, or recurrent tumors of the head and neck region, demonstrating the potential of BNCT in the treatment of difficult cancers. A variety of potentially highly effective boron-delivery agents have been synthesized in the past four decades and tested in cells and animal models. These include boron-containing nucleosides, peptides, proteins, polyamines, porphyrins, liposomes, monoclonal antibodies, and nanoparticles of various types. The most promising agents are multi-functional boronated molecules and nanoparticles functionalized with tumor cell-targeting moieties that increase their tumor selectivity and contain a radiolabel or fluorophore to allow quantification of 10B-biodistribution and treatment planning. This review discusses multi-functional boron agents reported in the last decade, but their full potential can only be ascertained after their evaluation in BNCT clinical trials.
Collapse
Affiliation(s)
- Sebastian O Oloo
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
6
|
Memar MY, Ahangarzadeh Rezaee M, Barzegar-Jalali M, Gholikhani T, Adibkia K. The Antibacterial Effect of Ciprofloxacin Loaded Calcium Carbonate (CaCO 3) Nanoparticles Against the Common Bacterial Agents of Osteomyelitis. Curr Microbiol 2023; 80:173. [PMID: 37029840 DOI: 10.1007/s00284-023-03234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/20/2023] [Indexed: 04/09/2023]
Abstract
The present study aimed to investigate the biocompatibility, antibacterial/anti-biofilm effects of ciprofloxacin-loaded calcium carbonate (Cip- loaded CaCO3) nanoparticles against the common organisms responsible for osteomyelitis. The antibacterial and biofilm inhibitory activities were studied by determination of minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentrations (MBICs), respectively. Hemolytic effects were determined for studying hemocompatibility. The SDS-PAGE method was used to study the interaction of Cip- loaded CaCO3 with plasma proteins. The effects of Cip- loaded CaCO3 on the cell viability of human bone marrow mesenchymal stem cells (hBM-MSCs) was detected. The Cip- loaded CaCO3 nanoparticles were shown a significant antimicrobial effect at lower concentrations than free ciprofloxacin. No significant hemolytic effect was observed. The Cip- loaded CaCO3 nanoparticles have shown interaction with apolipoprotein A1 (28 kDa) and albumin (66.5 kDa). The viability of hBM-MSCs treated with Cip- loaded CaCO3 was more than 96%. Our results indicated that Cip-loaded CaCO3 nanoparticles had favorable in vitro compatibility with human red blood cells, antimicrobial effects, and low cytotoxicity.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tooba Gholikhani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nanora Pharmaceuticals Ltd., Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Memar MY, Yekani M, Farajnia S, Ghadiri Moghaddam F, Nabizadeh E, Sharifi S, Maleki Dizaj S. Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and gram-negative bacteria. Arch Microbiol 2023; 205:109. [PMID: 36884153 DOI: 10.1007/s00203-023-03447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The present study aimed to prepare and characterize vancomycin-loaded mesoporous silica nanoparticles (Van-MSNs) to detect inhibitory effects on the planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA) isolates, and study the biocompatibility and toxicity of Van-MSNs in vitro as well as antibacterial activity of Van-MSNs against Gram-negative bacteria. The inhibitory effects of Van-MSNs were investigated on MRSA using the determination of minimum inhibitory (MIC) and minimum biofilm-inhibitory concentrations (MBIC) as well as the effect on bacterial attachment. Biocompatibility was studied by examining the effect of Van-MSNs on the lysis and sedimentation rate of red blood cells (RBC). The interaction of Van-MSNs with human blood plasma was detected by the SDS-PAGE approach. The cytotoxic effect of the Van-MSNs on human bone marrow mesenchymal stem cells (hBM-MSCs) was evaluated by the MTT assay. The antibacterial effects of vancomycin and Van-MSNs on Gram-negative bacteria were also investigated using MIC determination using the broth microdilution method. Furthermore, bacteria outer membrane (OM) permeabilization was determined. Van-MSNs showed inhibitory effects on planktonic and biofilm forms of bacteria on all isolates at levels lower than MICs and MBICs of free vancomycin, but the antibiofilm effect of Van-MSNs was not significant. However, Van-MSNs did not affect bacterial attachment to surfaces. Van-loaded MSNs did not show a considerable effect on the lysis and sedimentation of RBC. A low interaction of Van-MSNs was detected with albumin (66.5 kDa). The hBM-MSCs viability in exposure to different levels of Van-MSNs was 91-100%. MICs of ≥ 128 µg/mL were observed for vancomycin against all Gram-negative bacteria. In contrast, Van-MSNs exhibited modest antibacterial activity inhibiting the tested Gram-negative bacterial strains, at concentrations of ≤ 16 µg/mL. Van-MSNs increased the OM permeability of bacteria that can increase the antimicrobial effect of vancomycin. According to our findings, Van-loaded MSNs have low cytotoxicity, desirable biocompatibility, and antibacterial effects and can be an option for the battle against planktonic MRSA.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Ugraskan V, Bilgi M, Yazici O. Investigation of electrical conductivity and radical scavenging activity of boron phosphate filled polypyrrole nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, TURKEY
| | - Mesut Bilgi
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, TURKEY
| | - Ozlem Yazici
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, TURKEY
| |
Collapse
|
9
|
Isik B, Ugraskan V, Cakar F, Yazici O. Investigation of the Surface Properties of Hexagonal Boron Nitride and Boron Phosphate by Inverse Gas Chromatography at Infinite Dilution. J Chromatogr Sci 2022; 61:7-14. [PMID: 35244155 DOI: 10.1093/chromsci/bmac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 01/11/2023]
Abstract
The boron-based ceramics namely hexagonal boron nitride (h-BN) and boron phosphate (BPO4) were synthesized and characterized by Fourier transform infrared spectroscopy and X-ray diffraction analysis. The surface properties of h-BN and BPO4 were examined by inverse gas chromatography method. The dispersive surface energy and the acidic-basic character of h-BN, and BPO4 surfaces were estimated by the retention time with probes such as n-hexane, n-heptane, n-octane, n-nonane, n-decane, acetone, ethyl acetate, dichloromethane, chloroform and tetrahydrofuran at infinite dilution region. The dispersive surface free energies calculated using both Schultz and Dorris-Gray methods, decreased linearly with increasing temperature. The specific adsorption free energy and the specific adsorption enthalpy corresponding to acid-base surface interactions were determined. By correlating with the donor and acceptor numbers of the probes, the acidic and the basic parameters of the h-BN and BPO4 were calculated. The values obtained for and parameters indicated that h-BN has a basic character, whereas BPO4 has an acidic character.
Collapse
Affiliation(s)
- Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul, 34220, Turkey
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul, 34220, Turkey
| | - Fatih Cakar
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul, 34220, Turkey
| | - Ozlem Yazici
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul, 34220, Turkey
| |
Collapse
|
10
|
Ailuno G, Balboni A, Caviglioli G, Lai F, Barbieri F, Dellacasagrande I, Florio T, Baldassari S. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells 2022; 11:cells11244029. [PMID: 36552793 PMCID: PMC9776957 DOI: 10.3390/cells11244029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving mercaptoundecahydro-closo-dodecaborate and the boronophenylalanine-fructose complex are currently ongoing, the success of this promising anticancer therapy is hampered by the lack of appropriate drug delivery systems to selectively carry therapeutic concentrations of boron atoms to cancer tissues, allowing prolonged boron retention therein and avoiding the damage of healthy tissues. To achieve these goals, numerous research groups have explored the possibility to formulate nanoparticulate systems for boron delivery. In this review. we report the newest developments on boron vehiculating drug delivery systems based on nanoparticles, distinguished on the basis of the type of carrier used, with a specific focus on the formulation aspects.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| | | | - Francesco Lai
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, 09124 Cagliari, Italy
| | - Federica Barbieri
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | | | - Tullio Florio
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| |
Collapse
|
11
|
Uspenskii SA, Khaptakhanova PA. Boron nanoparticles in chemotherapy and radiotherapy: the synthesis, state-of-the-art, and prospects. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
12
|
Carborane-Containing Folic Acid bis-Amides: Synthesis and In Vitro Evaluation of Novel Promising Agents for Boron Delivery to Tumour Cells. Int J Mol Sci 2022; 23:ijms232213726. [PMID: 36430206 PMCID: PMC9692863 DOI: 10.3390/ijms232213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The design of highly selective low-toxic, low-molecular weight agents for boron delivery to tumour cells is of decisive importance for the development of boron neutron capture therapy (BNCT), a modern efficient combined method for cancer treatment. In this work, we developed a simple method for the preparation of new closo- and nido-carborane-containing folic acid bis-amides containing 18-20 boron atoms per molecule. Folic acid derivatives containing nido-carborane residues were characterised by high water solubility, low cytotoxicity, and demonstrated a good ability to deliver boron to tumour cells in in vitro experiments (up to 7.0 µg B/106 cells in the case of U87 MG human glioblastoma cells). The results obtained demonstrate the high potential of folic acid-nido-carborane conjugates as boron delivery agents to tumour cells for application in BNCT.
Collapse
|
13
|
Kuthala N, Shanmugam M, Yao CL, Chiang CS, Hwang KC. One step synthesis of 10B-enriched 10BPO4 nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomaterials 2022; 290:121861. [DOI: 10.1016/j.biomaterials.2022.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022]
|
14
|
Li F, Luo Z. Boron delivery agents for boron neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Beam port filters in a TRIGA MARK III nuclear reactor to produce epithermal neutrons for BNCT. Appl Radiat Isot 2021; 179:110018. [PMID: 34749092 DOI: 10.1016/j.apradiso.2021.110018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023]
Abstract
Glioblastoma multiforme is the most common and aggressive brain tumor and it is difficult to treat with conventional surgery, chemotherapy, or radiation therapy. An alternative treatment is boron neutron capture therapy which requires an energy modulated beam of neutrons and a10B drug capable of adhering to the tumor. In this work, MCNP6 Monte Carlo code was used to evaluate the effect on the neutron spectrum by placing two filters along the radial beam tube of the TRIGA Mark III nuclear reactor of ININ in Mexico. Every filter was made with the same amount and type of materials: Steel and Graphite for filter 1 and Cadmium, Aluminum, and Cadmium (Cd + Al + Cd) for filter 2. Two cases were analyzed for each filter as follows: Case A for filter 1 was considering 30 cm of steel and 30 cm of graphite, while for case B, the dimensions of filter 1 were 15 cm of steel, 15 cm of graphite, 15 cm of steel and 15 cm of graphite. Cases A and B for filter 2 were analyzed considering the same dimensions and amount of materials. The work was in the aim to produce epithermal neutrons for boron neutron capture therapy. Neutron spectra were calculated at three sites along the beam tube and two sites outside the beam tube; here, the ambient dose equivalent, the personal dose equivalent, and the effective doses were also estimated. At a distance of 517 cm of core, in case B, results in an epithermal-to-thermal neutron fluence ratio of 30.39 was obtained being larger than the one recommended by the IAEA of 20.
Collapse
|
16
|
Memar MY, Yekani M, Ghanbari H, Shahi S, Sharifi S, Maleki Dizaj S. Biocompatibility, cytotoxicity and antibacterial effects of meropenem-loaded mesoporous silica nanoparticles against carbapenem-resistant Enterobacteriaceae. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1354-1361. [PMID: 33236938 DOI: 10.1080/21691401.2020.1850466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The ever-increasing resistance to antimicrobial agents among bacteria associated with nosocomial infections indicate the necessity of new antimicrobial therapy. The nanoparticles are considered as new drug delivery systems to increase the efficiency and decrease the unfavourable effects of the antimicrobial agents. METHODS Herein we report the preparation and characterization of mesoporous silica nanoparticles (MSNs) loaded with meropenem against carbapenem-resistant Enterobacteriaceae. The antimicrobial effect of meropenem-loaded MSNs was determined against Enterobacteriaceae using the minimum inhibitory (MIC) method. The biocompatibility of meropenem-loaded MSNs was studied by the impact on the haemolysis and sedimentation rates of human red blood cells (HRBCs). Cytotoxicity of the meropenem-loaded MSNs was studied by the MTT test (hBM-MSC cell viability). RESULTS The meropenem-loaded MSNs have shown antibacterial activity on all isolates at different MIC values lower than MICs of meropenem. Free MSNs did not show any significant antibacterial effect. Meropenem-loaded MSNs have no significant effect on haemolysis and ESR of HRBCs. The viability of hBM-MSC cells treated with serial concentrations of meropenem-loaded MSNs was 92-100%. CONCLUSION Due to the desirable biocompatibility, low cytotoxicity and the improved antibacterial effect, MSNs can be considered as a promising drug delivery system for meropenem as a potential antimicrobial agent.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadi Ghanbari
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Kaur M, Singh P, Meena R, Nakagawa F, Suzuki M, Nakamura H, Kumar A. Boron Neutron Capture Therapy Study of 10B Enriched Nanostructured Boron Carbide Against Cervical Cancer and Glioblastoma Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01773-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Nakagawa F, Kawashima H, Morita T, Nakamura H. Water-Soluble closo-Docecaborate-Containing Pteroyl Derivatives Targeting Folate Receptor-Positive Tumors for Boron Neutron Capture Therapy. Cells 2020; 9:cells9071615. [PMID: 32635272 PMCID: PMC7407413 DOI: 10.3390/cells9071615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Water-soluble pteroyl-closo-dodecaborate conjugates (PBCs 1-4), were developed as folate receptor (FRα) targeting boron carriers for boron neutron capture therapy (BNCT). PBCs 1-4 had adequately low cytotoxicity with IC50 values in the range of 1~3 mM toward selected human cancer cells, low enough to use as BNCT boron agents. PBCs 1-3 showed significant cell uptake by FRα positive cells, especially U87MG glioblastoma cells, although the accumulation of PBC 4 was low compared with PBCs 1-3 and L-4-boronophenylalanine (L-BPA). The cellular uptake of PBC 1 and PBC 3 by HeLa cells was arrested by increasing the concentration of folate in the medium, indicating that the major uptake mechanisms of PBC 1-3 are primarily through FRα receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Fumiko Nakagawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan;
| | - Hidehisa Kawashima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan; (H.K.); (T.M.)
| | - Taiki Morita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan; (H.K.); (T.M.)
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan;
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan; (H.K.); (T.M.)
- Correspondence: ; Tel.: +81-45-924-5244
| |
Collapse
|
19
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
20
|
Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, Josephson L, Liang SH, Zhang MR. Boron agents for neutron capture therapy. Coord Chem Rev 2020; 405:213139. [DOI: 10.1016/j.ccr.2019.213139] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Memar MY, Adibkia K, Farajnia S, Kafil HS, Maleki Dizaj S, Ghotaslou R. Biocompatibility, cytotoxicity and antimicrobial effects of gentamicin-loaded CaCO3 as a drug delivery to osteomyelitis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Qian W, Qian M, Wang Y, Huang J, Chen J, Ni L, Huang Q, Liu Q, Gong P, Hou S, Zhu H, Jia Z, Shen D, Zhu C, Jiang R, Sun J, Yao J, Tang Z, Ji X, Shi J, Huang R, Shi W. Combination Glioma Therapy Mediated by a Dual-Targeted Delivery System Constructed Using OMCN-PEG-Pep22/DOX. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801905. [PMID: 30346089 DOI: 10.1002/smll.201801905] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Accumulating studies have investigated the efficacy of receptor-mediated delivery of hydrophobic drugs in glioma chemotherapy. Here, a delivery vehicle comprising polyethylene glycol (PEG) and oxidized nanocrystalline mesoporous carbon particles (OMCN) linked to the Pep22 polypeptide targeting the low-density lipoprotein receptor (LDLR) is designed to generate a novel drug-loaded system, designated as OMCN-PEG-Pep22/DOX (OPPD). This system effectively targets glioma cells and the blood-brain barrier and exerts therapeutic efficacy through both near-infrared (NIR) photothermal and chemotherapeutic effects of loaded doxycycline (DOX). Pathological tissue microarrays show an association of LDLR overexpression in human glioma tissue with patient survival.NIR irradiation treatment and magnetic resonance imaging results show that OPPD reaches the effective glioma-killing temperature in a glioma-bearing rat with a skull bone removal model and considerably reduces glioma sizes relative to the drug-loaded system without the Pep22 peptide modification and the control respectively. Thus, OPPD not only effectively targets LDLR-overexpressing glioma but also exerts a dual therapeutic effect by transporting DOX into the glioma and generating thermal effects with near-infrared irradiation to kill tumor cells. These collective findings support the utility of the novel OPPD drug-loaded system as a promising drug delivery vehicle for clinical application in glioma therapy.
Collapse
Affiliation(s)
- Wenbo Qian
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Jianfei Huang
- Department of Pathology, Clinical Bio-Bank, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jian Chen
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lanchun Ni
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qingfeng Huang
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qianqian Liu
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peipei Gong
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shiqiang Hou
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hui Zhu
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhongzheng Jia
- Medical Image Centre, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dandan Shen
- Medical Image Centre, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Rui Jiang
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junlong Sun
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junzhong Yao
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhongyu Tang
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiang Ji
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Shi
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wei Shi
- Jiangsu Clinical Medicine Centre of Tissue Engineering and Nerve Injury Repair, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
23
|
Ramachandran R, Jung D, Bernier NA, Logan JK, Waddington MA, Spokoyny AM. Sonochemical Synthesis of Small Boron Oxide Nanoparticles. Inorg Chem 2018; 57:8037-8041. [PMID: 29939022 DOI: 10.1021/acs.inorgchem.8b01189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of small boron oxide nanoparticles (NPs) is reported. A sonochemical approach in the presence of a capping agent was employed to produce approximately 4-5-nm-sized B2O3 NPs, including the 10B isotopically enriched form. The morphology and composition of the NPs were established using transmission electron microscopy and diffraction, respectively. X-ray photoelectron and Fourier transform infrared spectroscopies provided information about surface functionalization of the B2O3 NPs, which can be further modified through a facile, one-step ligand-exchange process. The toxicity of the synthesized NPs was investigated in Chinese hamster ovarian cells, indicating that these systems were nontoxic up to 1.7 mM concentrations.
Collapse
Affiliation(s)
- Roshini Ramachandran
- Department of Chemistry and Biochemistry , University of California, Los Angeles (UCLA) , 607 Charles E. Young Drive East , Los Angeles , California 90095 , United States
| | - Dahee Jung
- Department of Chemistry and Biochemistry , University of California, Los Angeles (UCLA) , 607 Charles E. Young Drive East , Los Angeles , California 90095 , United States
| | - Nicholas A Bernier
- Department of Chemistry and Biochemistry , University of California, Los Angeles (UCLA) , 607 Charles E. Young Drive East , Los Angeles , California 90095 , United States
| | - Jessica K Logan
- Department of Chemistry and Biochemistry , University of California, Los Angeles (UCLA) , 607 Charles E. Young Drive East , Los Angeles , California 90095 , United States
| | - Mary A Waddington
- Department of Chemistry and Biochemistry , University of California, Los Angeles (UCLA) , 607 Charles E. Young Drive East , Los Angeles , California 90095 , United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry , University of California, Los Angeles (UCLA) , 607 Charles E. Young Drive East , Los Angeles , California 90095 , United States.,California NanoSystems Institute , UCLA , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| |
Collapse
|
24
|
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018; 38:35. [PMID: 29914561 PMCID: PMC6006782 DOI: 10.1186/s40880-018-0299-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 P. R. China
| | - Weilian Yang
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
- Present Address: Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004 P. R. China
| |
Collapse
|
25
|
Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget 2018; 8:36614-36627. [PMID: 28402271 PMCID: PMC5482681 DOI: 10.18632/oncotarget.16625] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma.
Collapse
|
26
|
Aurich K, Wesche J, Palankar R, Schlüter R, Bakchoul T, Greinacher A. Magnetic Nanoparticle Labeling of Human Platelets from Platelet Concentrates for Recovery and Survival Studies. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34666-34673. [PMID: 28945336 DOI: 10.1021/acsami.7b10113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Platelets are the smallest blood cells and important for hemostasis. Platelet concentrates (PC) are medicinal products transfused to prevent or treat bleeding. Typically, platelets in PCs are assessed by in vitro tests for their function. However, in vivo testing of these platelets is highly desirable. To distinguish transfused platelets from patients or probands own cells after PC transfusions within the scope of clinical studies, platelets need to be efficiently labeled with minimal preactivation prior to transfusion. Here we report on a method for improved cell uptake of ferucarbotran magnetic nanoparticles contained in Resovist, an FDA-approved MRI contrast agent, by modifying the nanoparticle shell with human serum albumin (HSA). Both HSA-ferucarbotran nanoparticles and magnetically labeled platelets were produced according to EU-GMP guidelines. Platelet function after labeling was evaluated by light transmission aggregometry and by determination of expression of CD62P as platelet activation marker. Magnetic labeling does not impair platelet function and platelets showed reasonable activation response to agonists. Platelet survival studies in NOD/SCID-mice resulted in comparable survival behavior of magnetically labeled and nonlabeled platelets. Additionally, labeled platelets can be recovered from whole blood by magnetic separation.
Collapse
Affiliation(s)
- Konstanze Aurich
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| | - Jan Wesche
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| | - Raghavendra Palankar
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| | - Rabea Schlüter
- Imaging-Zentrum der Fachrichtung Biologie, Ernst-Moritz-Arndt-Universität Greifswald , Friedrich-Ludwig-Jahn-Straße 15, 17487 Greifswald, Germany
| | - Tamam Bakchoul
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| |
Collapse
|
27
|
Achilli C, Grandi S, Guidetti GF, Ciana A, Tomasi C, Capsoni D, Minetti G. Fe3O4@SiO2 core-shell nanoparticles for biomedical purposes: adverse effects on blood cells. Biomater Sci 2016; 4:1417-21. [PMID: 27517098 DOI: 10.1039/c6bm00374e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetite nanoparticles coated with silica, obtained by a sol-gel process in the reverse micelle microemulsion, were characterized and homogeneously suspended in water in order to assay their biocompatibility toward blood cells, in view of a potential medical use of this material. Their hemolytic, pro-thrombotic and pro-inflammatory properties were observed.
Collapse
Affiliation(s)
- C Achilli
- University of Pavia, Department of Biology and Biotechnology, Laboratories of Biochemistry, via Bassi 21, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Fröhlich E. Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation. Curr Med Chem 2016; 23:408-30. [PMID: 26063498 PMCID: PMC5403968 DOI: 10.2174/0929867323666160106151428] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Nanomaterials can get into the blood circulation after injection or by release from implants but also by permeation of the epithelium after oral, respiratory or dermal exposure. Once in the blood, they can affect hemostasis, which is usually not intended. This review addresses effects of biological particles and engineered nanomaterials on hemostasis. The role of platelets and coagulation in normal clotting and the interaction with the immune system are described. Methods to identify effects of nanomaterials on clotting and results from in vitro and in vivo studies are summarized and the role of particle size and surface properties discussed. The literature overview showed that mainly pro-coagulative effects of nanomaterials have been described. In vitro studies suggested stronger effects of smaller than of larger NPs on coagulation and a greater importance of material than of surface charge. For instance, carbon nanotubes, polystyrene particles, and dendrimers inferred with clotting independent from their surface charge. Coating of particles with polyethylene glycol was able to prevent interaction with clotting by some particles, while it had no effect on others and the more recently developed bio-inspired surfaces might help to design coatings for more biocompatible particles. The mainly pro-coagulative action of nanoparticles could present a particular risk for individuals affected by common diseases such as diabetes, cancer, and cardiovascular diseases. Under standardized conditions, in vitro assays using human blood appear to be a suitable tool to study mechanisms of interference with hemostasis and to optimize hemocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, Stiftingtalstr 24, 8010 Graz, Austria.
| |
Collapse
|
29
|
Luderer MJ, de la Puente P, Azab AK. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm Res 2015; 32:2824-36. [DOI: 10.1007/s11095-015-1718-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/18/2015] [Indexed: 01/16/2023]
|
30
|
Sugimoto H, Imakita K, Fujii M. Growth of novel boron-rich nanocrystals from oxygen-deficient borophosphosilicate glasses for boron neutron capture therapy. RSC Adv 2015. [DOI: 10.1039/c5ra18500a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We develop a new type of boron-rich nanocrystals, which are dispersible in water and exhibit photoluminescence in the biological window, can be a multifunctional biomaterial used for imaging, diagnosis and boron neutron capture therapy.
Collapse
Affiliation(s)
- H. Sugimoto
- Department of Electrical and Electronic Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - K. Imakita
- Department of Electrical and Electronic Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - M. Fujii
- Department of Electrical and Electronic Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
31
|
Achilli C, Ciana A, Minetti G. Amyloid-beta (25-35) peptide induces the release of pro-matrix metalloprotease 9 (pro-MMP-9) from human neutrophils. Mol Cell Biochem 2014; 397:117-23. [PMID: 25087121 DOI: 10.1007/s11010-014-2178-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/24/2014] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) is a degenerative process of the brain, leading to increasing impairment of cognitive functions, and is associated with accumulation in the brain of several amyloid-beta (Aβ) peptides (as amyloid plaques), including Aβ25-35. Neutrophils, the most abundant immune cell type infiltrated in the brain of AD patients, accumulate behind amyloid plaques. Aβ peptides can trigger activation of chemotaxis and oxidative burst in neutrophils, suggesting a role in modulating the neuroinflammation process. We have shown that Aβ25-35 can induce the release from human neutrophils of pro-MMP-9, a metalloprotease involved in the onset of inflammation, corroborating the hypothesis of the involvement of infiltrated neutrophils in the inflammatory processes, which occur in the AD brain.
Collapse
Affiliation(s)
- Cesare Achilli
- Laboratories of Biochemistry, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Bassi, 21, 27100, Pavia, Italy
| | | | | |
Collapse
|