1
|
James N, Owusu E, Rivera G, Bandyopadhyay D. Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action. Int J Mol Sci 2024; 25:6285. [PMID: 38892472 PMCID: PMC11172743 DOI: 10.3390/ijms25116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10-15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody-drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional.
Collapse
Affiliation(s)
- Nneoma James
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Esther Owusu
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
2
|
Sarkar R, Biswas S, Ghosh R, Samanta P, Pakhira S, Mondal M, Dutta Gupta Y, Bhandary S, Saha P, Bhowmik A, Hajra S. Exosome-sheathed porous silica nanoparticle-mediated co-delivery of 3,3'-diindolylmethane and doxorubicin attenuates cancer stem cell-driven EMT in triple negative breast cancer. J Nanobiotechnology 2024; 22:285. [PMID: 38796426 PMCID: PMC11127288 DOI: 10.1186/s12951-024-02518-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Therapeutic management of locally advanced and metastatic triple negative breast cancer (TNBC) is often limited due to resistance to conventional chemotherapy. Metastasis is responsible for more than 90% of breast cancer-associated mortality; therefore, the clinical need to prevent or target metastasis is immense. The epithelial to mesenchymal transition (EMT) of cancer stem cells (CSCs) is a crucial determinant in metastasis. Doxorubicin (DOX) is the frequently used chemotherapeutic drug against TNBC that may increase the risk of metastasis in patients. After cancer treatment, CSCs with the EMT characteristic persist, which contributes to advanced malignancy and cancer recurrence. The latest developments in nanotechnology for medicinal applications have raised the possibility of using nanomedicines to target these CSCs. Hence, we present a novel approach of combinatorial treatment of DOX with dietary indole 3,3'-diindolylmethane (DIM) which is an intriguing field of research that may target CSC mediated EMT induction in TNBC. For efficient delivery of both the compounds to the tumor niche, advance method of drug delivery based on exosomes sheathed with mesoporous silica nanoparticles may provide an attractive strategy. RESULTS DOX, according to our findings, was able to induce EMT in CSCs, making the breast cancer cells more aggressive and metastatic. In CSCs produced from spheres of MDAMB-231 and 4T1, overexpression of N-cadherin, Snail, Slug, and Vimentin as well as downregulation of E-cadherin by DOX treatment not only demonstrated EMT induction but also underscored the pressing need for a novel chemotherapeutic combination to counteract this detrimental effect of DOX. To reach this goal, DIM was combined with DOX and delivered to the CSCs concomitantly by loading them in mesoporous silica nanoparticles encapsulated in exosomes (e-DDMSNP). These exosomes improved the specificity, stability and better homing ability of DIM and DOX in the in vitro and in vivo CSC niche. Furthermore, after treating the CSC-enriched TNBC cell population with e-DDMSNP, a notable decrease in DOX mediated EMT induction was observed. CONCLUSION Our research seeks to propose a new notion for treating TNBC by introducing this unique exosomal nano-preparation against CSC induced EMT.
Collapse
Affiliation(s)
- Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Yashaswi Dutta Gupta
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Suman Bhandary
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India.
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700 026, India.
| |
Collapse
|
3
|
Kumari L, Mishra L, Patel P, Sharma N, Gupta GD, Kurmi BD. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J Drug Target 2023; 31:889-907. [PMID: 37539789 DOI: 10.1080/1061186x.2023.2245579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triple-negative breast cancer (TNBC), a subtype of breast cancer that lacks expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2), has clinical features including a high degree of invasiveness, an elevated risk of metastasis, tendency to relapse, and poor prognosis. It constitutes around 10-15% of all breast cancer, and having heredity of BRCA1 mutated breast cancer could be a reason for the occurrence of TNBC in women. Overexpression of cellular and molecular targets, i.e. CD44 receptor, EGFR receptor, Folate receptor, Transferrin receptor, VEGF receptor, and Androgen receptor, have emerged as promising targets for treating TNBC. Signalling pathways such as Notch signalling and PI3K/AKT/mTOR also play a significant role in carrying out and managing crucial pro-survival and pro-growth cellular processes that can be utilised for targeted therapy against triple-negative breast cancer. This review sheds light on various targeting strategies, including cellular and molecular targets, signalling pathways, poly (ADP-ribose) polymerase inhibitors, antibody-drug conjugates, and immune checkpoint inhibitors PARP, immunotherapy, ADCs have all found a place in the current TNBC therapeutic paradigm. The role of photothermal therapy (PTT) and photodynamic therapy (PDT) has also been explored briefly.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Lopamudra Mishra
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, Punjab, India
| | - Nitin Sharma
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Kabakov AE, Gabai VL. HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy. Cells 2021; 10:cells10123446. [PMID: 34943954 PMCID: PMC8700403 DOI: 10.3390/cells10123446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.
Collapse
Affiliation(s)
- Alexander E. Kabakov
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva 4, 249036 Obninsk, Russia;
| | - Vladimir L. Gabai
- CureLab Oncology Inc., Dedham, MA 02026, USA
- Correspondence: ; Tel.: +1-617-319-7314
| |
Collapse
|
5
|
Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, Kesharwani SS. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release 2020; 326:628-647. [PMID: 32653502 DOI: 10.1016/j.jconrel.2020.07.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) in which the three major receptors i.e. estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), are absent is known to express the most aggressive phenotype and increased metastasis which results in the development of resistance to chemotherapy. It offers various therapeutic advantages in treating BC and TNBC. Nanotechnology offers various unique characteristics such as small size (nanometric), active and passive targeting, and the ability to attach multiple targeting moieties, controlled release, and site-specific targeting. This review focuses on conventional drug therapies, recent treatment strategies, and unique therapeutic approaches available for BC and TNBC. The role of breast cancer stem cells in the recurrence of BC and TNBC has also been highlighted. Several chemotherapeutic agents delivered using nanocarriers such as polymeric nanoparticles/micelles, metallic/inorganic NPs, and lipid-based NPs (Liposome, solid-lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs)), etc. with excellent responses in the treatment of BC/TNBC along with breast cancer stem cells have been discussed in details. Moreover, the application of nanomedicine including CRISPR nanoparticle, exosomes for the treatment of BC/TNBC and other molecular targets available such as poly (ADP-ribose) polymerase (PARP), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor (VEGF), etc. for further exploration have also been discussed.
Collapse
Affiliation(s)
- Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Haritha V Anod
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Pallavi Chand
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Surajit Dey
- College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | | |
Collapse
|
6
|
Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed Pharmacother 2019; 110:319-341. [DOI: 10.1016/j.biopha.2018.11.122] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022] Open
|