1
|
Xue Q, Zhang J, Jiao J, Qin W, Yang X. Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities. Front Oncol 2022; 12:980239. [PMID: 36212416 PMCID: PMC9538922 DOI: 10.3389/fonc.2022.980239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, there has been a tendency toward early diagnosis of prostate cancer due to raised awareness among the general public and professionals, as well as the promotion of prostate-specific antigen (PSA) screening. As a result, patients with prostate cancer are detected at an earlier stage. Due to the risks of urine incontinence, erectile dysfunction, etc., surgery is not advised because the tumor is so small at this early stage. Doctors typically only advise active surveillance. However, it will bring negative psychological effects on patients, such as anxiety. And there is a higher chance of cancer progression. Focal therapy has received increasing attention as an alternative option between active monitoring and radical therapy. Due to its minimally invasive, oncological safety, low toxicity, minimal effects on functional outcomes and support by level 1 evidence from the only RCT within the focal therapy literature, photodynamic treatment (PDT) holds significant promise as the focal therapy of choice over other modalities for men with localized prostate cancer. However, there are still numerous obstacles that prevent further advancement. The review that follows provides an overview of the preclinical and clinical published research on PDT for prostate cancer from 1999 to the present. It focuses on clinical applications of PDT and innovative techniques and technologies that address current problems, especially the use of nanoparticle photosensitizers in PDT of prostate cancer.
Collapse
Affiliation(s)
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | | | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Giannelli M, Guerrini A, Ballestri M, Aluigi A, Zamboni R, Sotgiu G, Posati T. Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. NANOMATERIALS 2022; 12:nano12091406. [PMID: 35564115 PMCID: PMC9104131 DOI: 10.3390/nano12091406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
In recent years, several studies have focused their attention on the preparation of biocompatible and biodegradable nanocarriers of potential interest in the biomedical field, ranging from drug delivery systems to imaging and diagnosis. In this regard, natural biomolecules—such as proteins—represent an attractive alternative to synthetic polymers or inorganic materials, thanks to their numerous advantages, such as biocompatibility, biodegradability, and low immunogenicity. Among the most interesting proteins, keratin extracted from wool and feathers, as well as fibroin extracted from Bombyx mori cocoons, possess all of the abovementioned features required for biomedical applications. In the present review, we therefore aim to give an overview of the most important and efficient methodologies for obtaining drug-loaded keratin and fibroin nanoparticles, and of their potential for biomedical applications.
Collapse
|
3
|
Martella E, Dozza B, Ferroni C, Obeyok CO, Guerrini A, Tedesco D, Manet I, Sotgiu G, Columbaro M, Ballestri M, Martini L, Fini M, Lucarelli E, Varchi G, Duchi S. Two Beats One: Osteosarcoma Therapy with Light-Activated and Chemo-Releasing Keratin Nanoformulation in a Preclinical Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14030677. [PMID: 35336051 PMCID: PMC8950553 DOI: 10.3390/pharmaceutics14030677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma treatment is moving towards more effective combination therapies. Nevertheless, these approaches present distinctive challenges that can complicate the clinical translation, such as increased toxicity and multi-drug resistance. Drug co-encapsulation within a nanoparticle formulation can overcome these challenges and improve the therapeutic index. We previously synthetized keratin nanoparticles functionalized with Chlorin-e6 (Ce6) and paclitaxel (PTX) to combine photo (PDT) and chemotherapy (PTX) regimens, and the inhibition of osteosarcoma cells growth in vitro was demonstrated. In the current study, we generated an orthotopic osteosarcoma murine model for the preclinical evaluation of our combination therapy. To achieve maximum reproducibility, we systematically established key parameters, such as the number of cells to generate the tumor, the nanoparticles dose, the design of the light-delivery device, the treatment schedule, and the irradiation settings. A 60% engrafting rate was obtained using 10 million OS cells inoculated intratibial, with the tumor model recapitulating the histological hallmarks of the human counterpart. By scheduling the treatment as two cycles of injections, a 32% tumor reduction was obtained with PTX mono-therapy and a 78% reduction with the combined PTX-PDT therapy. Our findings provide the in vivo proof of concept for the subsequent clinical development of a combination therapy to fight osteosarcoma.
Collapse
Affiliation(s)
- Elisa Martella
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Barbara Dozza
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123 Bologna, Italy;
| | - Claudia Ferroni
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Clement Osuru Obeyok
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Andrea Guerrini
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Daniele Tedesco
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Ilse Manet
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Giovanna Sotgiu
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Marco Ballestri
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Lucia Martini
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (M.F.)
| | - Milena Fini
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (M.F.)
| | - Enrico Lucarelli
- Regenerative Therapies in Oncology of the Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
- Correspondence: (G.V.); (S.D.); Tel.: +39-051-6398283 (G.V.)
| | - Serena Duchi
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
- Department of Surgery, St. Vincent’s Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia
- Correspondence: (G.V.); (S.D.); Tel.: +39-051-6398283 (G.V.)
| |
Collapse
|
4
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
5
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
6
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021; 13:3484. [PMID: 34298707 PMCID: PMC8307713 DOI: 10.3390/cancers13143484] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with strong potential over well-established standard therapies in certain cases. Non-ionising radiation, localisation, possible repeated treatments, and stimulation of immunological response are some of the main beneficial features of PDT. Despite the great potential, its application remains challenging. Limited light penetration depth, non-ideal photosensitisers, complex dosimetry, and complicated implementations in the clinic are some limiting factors hindering the extended use of PDT. To surpass actual technological paradigms, radically new sources, light-based devices, advanced photosensitisers, measurement devices, and innovative application strategies are under extensive investigation. The main aim of this review is to highlight the advantages/pitfalls, technical challenges and opportunities of PDT, with a focus on technologies for light activation of photosensitisers, such as light sources, delivery devices, and systems. In this vein, a broad overview of the current status of superficial, interstitial, and deep PDT modalities-and a critical review of light sources and their effects on the PDT process-are presented. Insight into the technical advancements and remaining challenges of optical sources and light devices is provided from a physical and bioengineering perspective.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
7
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
8
|
Preclinical In Vivo Modeling of Pediatric Sarcoma-Promises and Limitations. J Clin Med 2021; 10:jcm10081578. [PMID: 33918045 PMCID: PMC8069549 DOI: 10.3390/jcm10081578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.
Collapse
|
9
|
Santos KLM, Barros RM, da Silva Lima DP, Nunes AMA, Sato MR, Faccio R, de Lima Damasceno BPG, Oshiro-Junior JA. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis Photodyn Ther 2020; 32:102032. [DOI: 10.1016/j.pdpdt.2020.102032] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
|
10
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
11
|
Lenna S, Bellotti C, Duchi S, Martella E, Columbaro M, Dozza B, Ballestri M, Guerrini A, Sotgiu G, Frisoni T, Cevolani L, Varchi G, Ferrari M, Donati DM, Lucarelli E. Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:40. [PMID: 32087737 PMCID: PMC7036176 DOI: 10.1186/s13046-020-01548-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Background Osteosarcoma (OS) is an aggressive malignant neoplasm that still suffers from poor prognosis in the case of distal metastases or occurrence of multi-drug resistance. It is therefore crucial to find novel therapeutic options able to go beyond these limitations and improve patients’ survival. The objective of this study is to exploit the intrinsic properties of mesenchymal stromal cells (MSCs) to migrate and infiltrate the tumor stroma to specifically deliver therapeutic agents directly to cancer cells. In particular, we aimed to test the efficacy of the photoactivation of MSCs loaded with nanoparticles in vitro and in a murine in vivo ectopic osteosarcoma model. Methods AlPcS4@FNPs were produced by adding tetra-sulfonated aluminum phthalocyanine (AlPcS4) to an aqueous solution of positively charged poly-methyl methacrylate core-shell fluorescent nanoparticles (FNPs). The photodynamic therapy (PDT) effect is achieved by activation of the photosensitizer AlPcS4 in the near-infrared light with an LED source. Human MSCs were isolated from the bone marrow of five donors to account for inter-patients variability and used in this study after being evaluated for their clonogenicity, multipotency and immunophenotypic profile. MSC lines were then tested for the ability to internalize and retain the nanoparticles, along with their migratory properties in vitro. Photoactivation effect was evaluated both in a monolayer (2D) co-culture of AlPcS4@FNPs loaded MSCs with human OS cells (SaOS-2) and in tridimensional (3D) multicellular spheroids (AlPcS4@FNPs loaded MSCs with human OS cells, MG-63). Cell death was assessed by AnnexinV/PI and Live&Dead CalceinAM/EthD staining in 2D, while in the 3D co-culture, the cell killing effect was measured through ATP content, CalceinAM/EthD staining and TEM imaging. We also evaluated the effectiveness of AlPcS4@FNPs loaded MSCs as delivery systems and the ability of the photodynamic treatment to kill cancer cells in a subcutaneous mouse model of OS by bioluminescence imaging (BLI) and histology. Results MSCs internalized AlPcS4@FNPs without losing or altering their motility and viability in vitro. Photoactivation of AlPcS4@FNPs loaded MSCs induced high level of OS cells death in the 2D co-culture. Similarly, in the 3D co-culture (MSCs:OS ratios 1:1 or 1:3), a substantial decrease of both MSCs and OS cells viability was observed. Notably, when increasing the MSCs:OS ratio to 1:7, photoactivation still caused more than 40% cells death. When tested in an in vivo ectopic OS model, AlPcS4@FNPs loaded MSCs were able to decrease OS growth by 68% after two cycles of photoactivation. Conclusions Our findings demonstrate that MSCs can deliver functional photosensitizer-decorated nanoparticles in vitro and in vivo and inhibit OS tumor growth. MSCs may be an effective platform for the targeted delivery of therapeutic nanodrugs in a clinical scenario, alone or in combination with other osteosarcoma treatment modalities.
Collapse
Affiliation(s)
- Stefania Lenna
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Chiara Bellotti
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Serena Duchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Elisa Martella
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Marta Columbaro
- Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Barbara Dozza
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy
| | - Marco Ballestri
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Andrea Guerrini
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Tommaso Frisoni
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy.,3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Luca Cevolani
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Present Address: Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Davide Maria Donati
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.,Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy.,3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
12
|
de Melo MT, Piva HL, Tedesco AC. Design of new protein drug delivery system (PDDS) with photoactive compounds as a potential application in the treatment of glioblastoma brain cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110638. [PMID: 32204072 DOI: 10.1016/j.msec.2020.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive malignant brain tumor. Despite advances in treatment modalities, it remains largely incurable. This unfavorable prognosis for GBM is at least partly due to the lack of a successful drug delivery system across the blood-brain barrier (BBB). The delivery of drugs through nanomedicines combined with less invasive alternative therapies represents an important hope for the future of these incurable brain tumors. Whey protein nanocarriers represent promising strategy for targeted drug delivery to tumor cells by enhancing the drug's bioavailability and distribution, and reducing the body's response towards drug resistance. They have been extensively studied to find new alternatives for capacity to encapsulate different drugs and no need for cross-linkers. In this study, we report for the first time the incorporation and administration of Aluminum phthalocyanine chloride (AlClPc)-loaded whey protein drug delivery system (AlClPc-PDDS) for the treatment of glioblastoma brain cancer. This system was designed and optimized (with the use of the spray drying technique) to obtain the required particle size (in the range of 100 to 300 nm), zeta potential and drug loading. Our results suggest that we have developed a drug delivery system from a low-cost raw material and preparation method that is capable of incorporating hydrophobic drugs which, in combination with irradiation, cause photodamage to neoplasic cells, working as an effective adjuvant treatment for malignant glioma.
Collapse
Affiliation(s)
- Maryanne Trafani de Melo
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Henrique Luis Piva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Ferroni C, Del Rio A, Martini C, Manoni E, Varchi G. Light-Induced Therapies for Prostate Cancer Treatment. Front Chem 2019; 7:719. [PMID: 31737599 PMCID: PMC6828976 DOI: 10.3389/fchem.2019.00719] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PC) is one of the most widespread tumors affecting the urinary system and the fifth-leading cause from cancer death in men worldwide. Despite PC mortality rates have been decreasing during the last years, most likely due to an intensification of early diagnosis, still more than 300,000 men die each year because of this disease. In this view, researchers in all countries are engaged in finding new ways to tackle PC, including the design and synthesis of novel molecular and macromolecular entities able to challenge different PC biological targets, while limiting the extent of unwanted side effects that significantly limit men's life quality. Among this field of research, photo-induced therapies, such as photodynamic and photothermal therapies (PDT and PTT), might represent an important advancement in PC treatment due to their extremely localized and controlled cytotoxic effect, as well as their low incidence of side effects and tumor resistance occurrence. Based on these considerations, this review aims to gather and discuss the last 5-years literature reports dealing with the synthesis and biological activity of molecular conjugates and nano-platforms for photo-induced therapies as co-adjuvant or combined therapeutic modalities for the treatment of localized PC.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity – ISOF, Italian National Research Council, Bologna, Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity – ISOF, Italian National Research Council, Bologna, Italy
- Innovamol Consulting Srl, Modena, Italy
| | - Cecilia Martini
- Institute of Organic Synthesis and Photoreactivity – ISOF, Italian National Research Council, Bologna, Italy
| | - Elisabetta Manoni
- Institute of Organic Synthesis and Photoreactivity – ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity – ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
14
|
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018; 261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
This up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles - nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e., self-aggregation, interfacial deposition, interfacial polymerization, or core-shell entrapment along with physical adsorption) or covalent (chemical immobilization or conjugation) processes. These PS loading approaches should provide chemical and physical stability to PS payloads. Their hydrophilic surfaces, capable of appreciable surface interactions with biological systems, can be further modified using functional groups (stealth effect) to achieve prolonged circulation in the body after administration and/or grafted by targeting agents (such as ligands, which bind to specific receptors uniquely expressed on the cell surface) or stimuli (e.g., pH, temperature, and light)-responsive moieties to improve their action and targeting efficiency. These attempts may in principle permit efficacious PDT, combination therapies, molecular diagnosis, and - in the case of nanotheranostics - simultaneous monitoring and treatment. Nanophotosensitizers (nano-PSs) should possess appropriate morphologies, sizes, unimodal distributions and surface processes to be successfully delivered to the place of action after systemic administration and should be accumulated in certain tumors by passive and/or active targeting. Additionally, physically facilitating drug delivery systems emerge as a promising approach to enhancing drug delivery, especially for the non-invasive treatment of deep-seated malignant tissues. Recent advances in nano-PSs are scrutinized, with an emphasis on design principles, via the promising use of colloid chemistry and nanotechnology.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agata Pucek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556 Wrocław, Poland
| | - Michał Chudy
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Brzózka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
15
|
Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:169-177. [DOI: 10.1016/j.jphotobiol.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
|
16
|
Gheewala T, Skwor T, Munirathinam G. Photosensitizers in prostate cancer therapy. Oncotarget 2018; 8:30524-30538. [PMID: 28430624 PMCID: PMC5444762 DOI: 10.18632/oncotarget.15496] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023] Open
Abstract
The search for new therapeutics for the treatment of prostate cancer is ongoing with a focus on the balance between the harms and benefits of treatment. New therapies are being constantly developed to offer treatments similar to radical therapies, with limited side effects. Photodynamic therapy (PDT) is a promising strategy in delivering focal treatment in primary as well as post radiotherapy prostate cancer. PDT involves activation of a photosensitizer (PS) by appropriate wavelength of light, generating transient levels of reactive oxygen species (ROS). Several photosensitizers have been developed with a focus on treating prostate cancer like mTHPC, motexafin lutetium, padoporfin and so on. This article will review newly developed photosensitizers under clinical trials for the treatment of prostate cancer, along with the potential advantages and disadvantages in delivering focal therapy.
Collapse
Affiliation(s)
- Taher Gheewala
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL, USA
| | - Troy Skwor
- Department of Chemical and Biological Sciences, Rockford University, Rockford, IL, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL, USA
| |
Collapse
|
17
|
Amaral LS, Azevedo EB, Perussi JR. The response surface methodology speeds up the search for optimal parameters in the photoinactivation of E. coli by photodynamic therapy. Photodiagnosis Photodyn Ther 2018; 22:26-33. [PMID: 29499392 DOI: 10.1016/j.pdpdt.2018.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/15/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Antimicrobial Photodynamic Inactivation (a-PDI) is based on the oxidative destruction of biological molecules by reactive oxygen species generated by the photo-excitation of a photosensitive molecule. When a-PDT is performed with the use of mathematical models, the optimal conditions for maximum inactivation are found. Experimental designs allow a multivariate analysis of the experimental parameters. This is usually made using a univariate approach, which demands a large number of experiments, being time and money consuming. This paper presents the use of the response surface methodology for improving the search for the best conditions to reduce E. coli survival levels by a-PDT using methylene blue (MB) and toluidine blue (TB) as photosensitizers and white light. The goal was achieved by analyzing the effects and interactions of the three main parameters involved in the process: incubation time (IT), photosensitizer concentration (CPS), and light dose (LD). The optimization procedure began with a full 23 factorial design, followed by a central composite one, in which the optimal conditions were estimated. For MB, CPS was the most important parameter followed by LD and IT whereas, for TB, the main parameter was LD followed by CPS and IT. Using the estimated optimal conditions for inactivation, MB was able to inactivate 99.999999% CFU mL-1 of E. coli with IT of 28 min, LD of 31 J cm-2, and CPS of 32 μmol L-1, while TB required 18 min, 39 J cm-2, and 37 μmol L-1. The feasibility of using the response surface methodology with a-PDT was demonstrated, enabling enhanced photoinactivation efficiency and fast results with a minimal number of experiments.
Collapse
Affiliation(s)
- Larissa S Amaral
- Programa de Pós-Graduação Interunidades em Bioengenharia EESC/FMRP/IQSC, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, São Carlos, SP 13566-590, Brazil
| | - Eduardo B Azevedo
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, São Carlos, SP 13566-590, Brazil
| | - Janice R Perussi
- Programa de Pós-Graduação Interunidades em Bioengenharia EESC/FMRP/IQSC, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, São Carlos, SP 13566-590, Brazil; Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
18
|
Malekigorji M, Alfahad M, Kong Thoo Lin P, Jones S, Curtis A, Hoskins C. Thermally triggered theranostics for pancreatic cancer therapy. NANOSCALE 2017; 9:12735-12745. [PMID: 28829476 DOI: 10.1039/c7nr02751f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hybrid iron oxide-gold nanoparticles (HNPs) show the ability to bind drugs onto their surface with a triggered release at elevated temperatures. The iron oxide core allows for diagnostic imaging whilst heating of the gold shell upon laser irradiation reverses drug binding. This study exploits the reversible binding of novel polyamine based drugs in order to provide a specific and effective method for pancreatic cancer treatment. Here we used a novel bisnaphthalamido (BNIP) based drug series. Our hybrid nanoparticles (50 nm) showed the ability to load drugs onto their surface (3 : 1 : 0.25, drug : Fe : Au). By exploiting the surface-to-drug electrostatic interaction of a range of BNIP agents, heat triggered drug release was achieved. A 12-fold reduction in IC50 after 24 h in vitro and a 5-fold reduction of tumour retardation in vivo compared with free drug in pancreatic models after treatment were achieved with the HNP-formulation and laser irradiation. This heat activated system could provide a key platform for future therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Malekigorji
- Institute of Science and Technology in Medicine, School of Pharmacy, Faculty of Medicine and Health Sciences, Keele University, Keele, ST5 5BG, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
20
|
Leandro FZ, Martins J, Fontes AM, Tedesco AC. Evaluation of theranostic nanocarriers for near-infrared imaging and photodynamic therapy on human prostate cancer cells. Colloids Surf B Biointerfaces 2017; 154:341-349. [PMID: 28365423 DOI: 10.1016/j.colsurfb.2017.03.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/22/2017] [Accepted: 03/18/2017] [Indexed: 12/11/2022]
Abstract
This paper evaluates how effectively chloroaluminum phthalocyanine (ClAlPc) entrapped in colloidal nanocarriers, such as nanocapsule (NC) and nanoemulsion (NE), induces photodamage in human prostate cancer cells (LNCaP) during photodynamic therapy (PDT). The MTT cell viability assay showed that both ClAlPc-NC and ClAlPc-NE induced phototoxicity and efficiently killed LNCaP cells at low ClAlPc-NC and ClAlPc-NE concentrations (0.3μgmL-1) as well as under low light doses of 4Jcm-2 and 7Jcm-2, respectively, upon PDT with a 670-nm diode laser line. Confocal imaging studies indicated that ClAlPc-NC and ClAlPc-NE were preferentially localized in the perinuclear region of LNCaP cells both in the dark and upon irradiation with laser light. After PDT treatment, ClAlPc-NC-treated LNCaP cells exhibited a higher green fluorescence signal, possibly due to the larger shrinkage of the actin cytoskeleton, compared to ClAlPc-NE-treated LNCaP cells. Additionally, ClAlPc-NC or ClAlPc-NE and mitochondria showed a relatively high co-localization level. The cellular morphology did not change in the dark, but confocal micrographs recorded after PDT revealed that LNCaP cells treated with ClAlPc-NC or ClAlPc-NE underwent morphological alterations. Our preliminary in vitro studies reinforced the hypothesis that biocompatible theranostic ClAlPc-loaded nanocarriers could act as an attractive photosensitizer system in PDT and could serve as an interesting molecular probe for the early diagnosis of prostate cancer and other carcinomas.
Collapse
Affiliation(s)
- Fernanda Z Leandro
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Brazil
| | - Júlia Martins
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Brazil
| | - Aparecida M Fontes
- Centro Regional de Hemoterapia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Brazil.
| |
Collapse
|