1
|
Naveed M, Smedlund K, Zhou QG, Cai W, Hill JW. Astrocyte involvement in metabolic regulation and disease. Trends Endocrinol Metab 2025; 36:219-234. [PMID: 39214743 PMCID: PMC11868460 DOI: 10.1016/j.tem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Astrocytes, the predominant glial cell type in the mammalian brain, influence a wide variety of brain parameters including neuronal energy metabolism. Exciting recent studies have shown that obesity and diabetes can impact on astrocyte function. We review evidence that dysregulation of astrocytic lipid metabolism and glucose sensing contributes to dysregulation of whole-body energy balance, thermoregulation, and insulin sensitivity. In addition, we consider the overlooked topic of the sex-specific roles of astrocytes and their response to hormonal fluctuations that provide insights into sex differences in metabolic regulation. Finally, we provide an update on potential ways to manipulate astrocyte function, including genetic targeting, optogenetic and chemogenetic techniques, transplantation, and tailored exosome-based therapies, which may lead to improved treatments for metabolic disease.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Weikang Cai
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
2
|
Liu Y, Xia X, Zheng M, Shi B. Bio-Nano Toolbox for Precision Alzheimer's Disease Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314354. [PMID: 38778446 DOI: 10.1002/adma.202314354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market β-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
3
|
Huang WH, Ding SL, Zhao XY, Li K, Guo HT, Zhang MZ, Gu Q. Collagen for neural tissue engineering: Materials, strategies, and challenges. Mater Today Bio 2023; 20:100639. [PMID: 37197743 PMCID: PMC10183670 DOI: 10.1016/j.mtbio.2023.100639] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.
Collapse
Affiliation(s)
- Wen-Hui Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Kai Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
| | - Hai-Tao Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
| | - Ming-Zhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
- Corresponding author.
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 101499, PR China
- Corresponding author. Institute of Zoology, Chinese Academy of Sciences, No. 5 of Courtyard 1, Beichen West Road, Chaoyang District, Beijing 100101, PR China.
| |
Collapse
|
4
|
Trombino S, Sole R, Curcio F, Cassano R. Polymeric Based Hydrogel Membranes for Biomedical Applications. MEMBRANES 2023; 13:576. [PMID: 37367780 DOI: 10.3390/membranes13060576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The development of biomedical applications is a transdisciplinary field that in recent years has involved researchers from chemistry, pharmacy, medicine, biology, biophysics, and biomechanical engineering. The fabrication of biomedical devices requires the use of biocompatible materials that do not damage living tissues and have some biomechanical characteristics. The use of polymeric membranes, as materials meeting the above-mentioned requirements, has become increasingly popular in recent years, with outstanding results in tissue engineering, for regeneration and replenishment of tissues constituting internal organs, in wound healing dressings, and in the realization of systems for diagnosis and therapy, through the controlled release of active substances. The biomedical application of hydrogel membranes has had little uptake in the past due to the toxicity of cross-linking agents and to the existing limitations regarding gelation under physiological conditions, but now it is proving to be a very promising field This review presents the important technological innovations that the use of membrane hydrogels has promoted, enabling the resolution of recurrent clinical problems, such as post-transplant rejection crises, haemorrhagic crises due to the adhesion of proteins, bacteria, and platelets on biomedical devices in contact with blood, and poor compliance of patients undergoing long-term drug therapies.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
5
|
Bechinger P, Serrano Sponton L, Grützner V, Musyanovych A, Jussen D, Krenzlin H, Eldahaby D, Riede N, Kempski O, Ringel F, Alessandri B. In-vivo time course of organ uptake and blood-brain-barrier permeation of poly(L-lactide) and poly(perfluorodecyl acrylate) nanoparticles with different surface properties in unharmed and brain-traumatized rats. Front Neurol 2023; 14:994877. [PMID: 36814997 PMCID: PMC9939480 DOI: 10.3389/fneur.2023.994877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Background Traumatic brain injury (TBI) has a dramatic impact on mortality and quality of life and the development of effective treatment strategies is of great socio-economic relevance. A growing interest exists in using polymeric nanoparticles (NPs) as carriers across the blood-brain barrier (BBB) for potentially effective drugs in TBI. However, the effect of NP material and type of surfactant on their distribution within organs, the amount of the administrated dose that reaches the brain parenchyma in areas with intact and opened BBB after trauma, and a possible elicited inflammatory response are still to be clarified. Methods The organ distribution, BBB permeation and eventual inflammatory activation of polysorbate-80 (Tw80) and sodiumdodecylsulfate (SDS) stabilized poly(L-lactide) (PLLA) and poly(perfluorodecyl acrylate) (PFDL) nanoparticles were evaluated in rats after intravenous administration. The NP uptake into the brain was assessed under intact conditions and after controlled cortical impact (CCI). Results A significantly higher NP uptake at 4 and 24 h after injection was observed in the liver and spleen, followed by the brain and kidney, with minimal concentrations in the lungs and heart for all NPs. A significant increase of NP uptake at 4 and 24 h after CCI was observed within the traumatized hemisphere, especially in the perilesional area, but NPs were still found in areas away from the injury site and the contralateral hemisphere. NPs were internalized in brain capillary endothelial cells, neurons, astrocytes, and microglia. Immunohistochemical staining against GFAP, Iba1, TNFα, and IL1β demonstrated no glial activation or neuroinflammatory changes. Conclusions Tw80 and SDS coated biodegradable PLLA and non-biodegradable PFDL NPs reach the brain parenchyma with and without compromised BBB by TBI, even though a high amount of NPs are retained in the liver and spleen. No inflammatory reaction is elicited by these NPs within 24 h after injection. Thus, these NPs could be considered as potentially effective carriers or markers of newly developed drugs with low or even no BBB permeation.
Collapse
Affiliation(s)
- Patrick Bechinger
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Anesthesiology, Helios Dr. Horst Schmidt Clinic, Wiesbaden, Germany
| | - Lucas Serrano Sponton
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Neurosurgery, Sana Clinic Offenbach, Offenbach, Germany,*Correspondence: Lucas Serrano Sponton ✉
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Anna Musyanovych
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Daniel Jussen
- Department of Neurosurgery, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Daniela Eldahaby
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicole Riede
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Oliver Kempski
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Beat Alessandri
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
6
|
Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023; 20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic central nervous system (CNS) injuries, including spinal cord injury and traumatic brain injury, are challenging enemies of human health. Microglia, the main component of the innate immune system in CNS, can be activated postinjury and are key participants in the pathological procedure and development of CNS trauma. Activated microglia can be typically classified into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Reducing M1 polarization while promoting M2 polarization is thought to be promising for CNS injury treatment. However, obstacles such as the low permeability of the blood-brain barrier and short retention time in circulation limit the therapeutic outcomes of administrated drugs, and rational delivery strategies are necessary for efficient microglial regulation. To this end, proper administration methods and delivery systems like nano/microcarriers and scaffolds are investigated to augment the therapeutic effects of drugs, while some of these delivery systems have self-efficacies in microglial manipulation. Besides, systems based on cell and cell-derived exosomes also show impressive effects, and some underlying targeting mechanisms of these delivery systems have been discovered. In this review, we introduce the roles of microglia play in traumatic CNS injuries, discuss the potential targets for the polarization regulation of microglial phenotype, and summarize recent studies and clinical trials about delivery strategies on enhancing the effect of microglial regulation and therapeutic outcome, as well as targeting mechanisms post CNS trauma.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer, Pharmacology and Toxicology Research of Zhejiang Province, Affiliated, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
7
|
Mathew AA, Panonnummal R. Cortical spreading depression: culprits and mechanisms. Exp Brain Res 2022; 240:733-749. [DOI: 10.1007/s00221-022-06307-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/06/2022] [Indexed: 02/14/2023]
|
8
|
Varier P, Raju G, Madhusudanan P, Jerard C, Shankarappa SA. A Brief Review of In Vitro Models for Injury and Regeneration in the Peripheral Nervous System. Int J Mol Sci 2022; 23:816. [PMID: 35055003 PMCID: PMC8775373 DOI: 10.3390/ijms23020816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve axonal injury and associated cellular mechanisms leading to peripheral nerve damage are important topics of research necessary for reducing disability and enhancing quality of life. Model systems that mimic the biological changes that occur during human nerve injury are crucial for the identification of cellular responses, screening of novel therapeutic molecules, and design of neural regeneration strategies. In addition to in vivo and mathematical models, in vitro axonal injury models provide a simple, robust, and reductionist platform to partially understand nerve injury pathogenesis and regeneration. In recent years, there have been several advances related to in vitro techniques that focus on the utilization of custom-fabricated cell culture chambers, microfluidic chamber systems, and injury techniques such as laser ablation and axonal stretching. These developments seem to reflect a gradual and natural progression towards understanding molecular and signaling events at an individual axon and neuronal-soma level. In this review, we attempt to categorize and discuss various in vitro models of injury relevant to the peripheral nervous system and highlight their strengths, weaknesses, and opportunities. Such models will help to recreate the post-injury microenvironment and aid in the development of therapeutic strategies that can accelerate nerve repair.
Collapse
Affiliation(s)
| | | | | | | | - Sahadev A. Shankarappa
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (P.V.); (G.R.); (P.M.); (C.J.)
| |
Collapse
|
9
|
Liposome delivery to the brain with rapid short-pulses of focused ultrasound and microbubbles. J Control Release 2021; 341:605-615. [PMID: 34896448 DOI: 10.1016/j.jconrel.2021.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Liposomes are clinically used drug carriers designed to improve the delivery of drugs to specific tissues while minimising systemic distribution. However, liposomes are unable to cross the blood-brain barrier (BBB) and enter the brain, mostly due to their large size (ca. 100 nm). A noninvasive and localised method of delivering liposomes across the BBB is to intravenously inject microbubbles and apply long pulses of ultrasound (pulse length: >1 ms) to a targeted brain region. Recently, we have shown that applying rapid short pulses (RaSP) (pulse length: 5 μs) can deliver drugs with an improved efficacy and safety profile. However, this was tested with a relatively smaller 3-kDa molecule (dextran). In this study, we examine whether RaSP can deliver liposomes to the murine brain in vivo. Fluorescent DiD-PEGylated liposomes were synthesized and injected intravenously alongside microbubbles. The left hippocampus of mice was then sonicated with either a RaSP sequence (5 μs at 1.25 kHz in groups of 10 ms at 0.5 Hz) or a long pulse sequence (10 ms at 0.5 Hz), with each pulse having a 1-MHz centre frequency (0.35 and 0.53 MPa). The delivery and distribution of the fluorescently-labelled liposomes were assessed by fluorescence imaging of the brain sections. The safety profile of the sonicated brains was assessed by histological staining. RaSP was shown to locally deliver liposomes across the BBB at 0.53 MPa with a more diffused and safer profile compared to the long pulse ultrasound sequence. Cellular uptake of liposomes was observed in neurons and microglia, while no uptake within astrocytes was observed in both RaSP and long pulse-treated brains. This study shows that RaSP allows a targeted and safe delivery of liposomal drugs into the murine brain with potential to deliver drugs into neuronal and glial targets.
Collapse
|
10
|
Faraji AH, Rajendran S, Jaquins-Gerstl AS, Hayes HJ, Richardson RM. Convection-Enhanced Delivery and Principles of Extracellular Transport in the Brain. World Neurosurg 2021; 151:163-171. [PMID: 34044166 DOI: 10.1016/j.wneu.2021.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Stereotactic neurosurgery involves a targeted intervention based on congruence of image guidance to a reference fiducial system. This discipline has widespread applications in radiosurgery, tumor therapy, drug delivery, functional lesioning, and neuromodulation. In this article, we focused on convection-enhanced delivery to deliver therapeutic agents to the brain addressing areas of research and clinical development. We performed a robust literature review of all relevant articles highlighting current efforts and challenges of making this delivery technique more widely understood. We further described key biophysical properties of molecular transport in the extracellular space that may impact the efficacy and control of drug delivery using stereotactic methods. Understanding these principles is critical for further refinement of predictive models that can inform advances in stereotactic techniques for convection-enhanced delivery of therapeutic agents to the brain.
Collapse
Affiliation(s)
- Amir H Faraji
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas, USA; Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, USA; Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, Houston, Texas, USA.
| | - Sibi Rajendran
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | | | - Hunter J Hayes
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - R Mark Richardson
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Lira-Diaz E, Gonzalez-Pedroza MG, Vasquez C, Morales-Luckie RA, Gonzalez-Perez O. Gold nanoparticles produce transient reactive gliosis in the adult brain. Neurosci Res 2021; 170:76-86. [PMID: 33358926 DOI: 10.1016/j.neures.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Gold nanoparticles (GNPs) have unique physical and chemical properties that allow them to function as a drug-delivery system for several tissues: skin, eye, liver, and others. However, information about the biological response of brain tissue against GNPs is limited. Astrocytes and microglia cells are the first line of defense against brain insults and proper indicators of the level of brain damage. This study was aimed to evaluate the astrocytic and microglia response after an intracerebral injection of polyethylene-glycol-coupled GNPs (PEGylated GNPs). We injected spherical PEGylated GNPs (85 × 106 nanoparticles /nl) with a glass micropipette (inner diameter =35 μm) into the striatum of P60 CD1 mice. We evaluated the cellular response of astrocytes and microglia on days 3, 7, 14, 30, and 90 after intracerebral injection. For both astrocytes and microglia cells, our findings indicated that the glial response was transient and mainly circumscribed to the injection site. This evidence suggests that PEGylated GNPs are well-tolerated by the neural tissue. Understanding the effects of GNPs in the adult brain is a crucial step to design proper pharmacological vehicles to deliver long-lasting drugs.
Collapse
Affiliation(s)
- Eduardo Lira-Diaz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, 28040, Mexico; Physiological Science PhD Program. School of Medicine, University of Colima, Colima, 28040, Mexico
| | - Maria G Gonzalez-Pedroza
- Department of Nanomaterials, Sustainable Chemistry Research Center, National Autonomous University of Mexico/Autonomous University of the State of Mexico, Toluca, 50200, Mexico
| | - Clemente Vasquez
- University Center for Biomedical Research, University of Colima, Colima, 28040, Mexico
| | - Raul A Morales-Luckie
- Department of Nanomaterials, Sustainable Chemistry Research Center, National Autonomous University of Mexico/Autonomous University of the State of Mexico, Toluca, 50200, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, 28040, Mexico.
| |
Collapse
|
12
|
Mathew SE, Madhusudanan P, Shankarappa SA. Effect of Peritumoral Bupivacaine on Primary and Distal Hyperalgesia in Cancer-Induced Bone Pain. J Pain Res 2020; 13:1305-1313. [PMID: 32581572 PMCID: PMC7276331 DOI: 10.2147/jpr.s250198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background Cancer-induced bone pain (CIBP) is a debilitating chronic pain condition caused by injury to bone nerve terminals due to primary or metastasized bone tumors. Pain manifests as enhanced sensitivity, not only over the affected bone site but also at distal areas that share common nerve innervation with the tumor. In this study, we aim to understand how tumor-induced primary and distal pain sensitivities are affected by bupivacaine-induced block of bone nerve endings in a rat model of CIBP. Methods MRMT-1 breast cancer cells were injected into the proximal segment of tibia in female Sprague–Dawley rats. Radiograms and micro-CT images were obtained to confirm tumor growth. Bupivacaine was injected peritumorally at day 7 or day 14 post-tumor induction, and withdrawal thresholds in response to pressure and punctate mechanical stimulus were recorded from the knee and hind-paw, respectively. Immunohistochemical studies for the determination of ATF3 and GFAP expression in DRG and spinal cord sections were performed. Results Rats developed primary and distal hyperalgesia after MRMT-1 administration that was sustained for 2 weeks. Peritumoral administration of bupivacaine in 7-day post-tumor-induced (PTI) rats resulted in a reversal of both primary and distal hyperalgesia for 20–30 mins. However, bupivacaine failed to reverse distal hyperalgesia in 14 day-PTI rats. ATF3 and GFAP expression were much enhanced in 14 day-PTI animals, compared to 7 day-PTI group. Conclusion Results from this study strongly suggest that distal hyperalgesia of late-stage CIBP demonstrates differential characteristics consistent with neuropathic pain as compared to early stage, which appears more inflammatory in nature.
Collapse
Affiliation(s)
- Sumi Elizabeth Mathew
- Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Pallavi Madhusudanan
- Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Sahadev A Shankarappa
- Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| |
Collapse
|
13
|
Traub RD, Moeller F, Rosch R, Baldeweg T, Whittington MA, Hall SP. Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms. Rev Neurosci 2020; 31:181-200. [PMID: 31525161 DOI: 10.1515/revneuro-2019-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 11/15/2022]
Abstract
Infantile spasms (IS) and seizures with focal onset have different clinical expressions, even when electroencephalography (EEG) associated with IS has some degree of focality. Oddly, identical pathology (with, however, age-dependent expression) can lead to IS in one patient vs. focal seizures in another or even in the same, albeit older, patient. We therefore investigated whether the cellular mechanisms underlying seizure initiation are similar in the two instances: spasms vs. focal. We noted that in-common EEG features can include (i) a background of waves at alpha to delta frequencies; (ii) a period of flattening, lasting about a second or more - the electrodecrement (ED); and (iii) often an interval of very fast oscillations (VFO; ~70 Hz or faster) preceding, or at the beginning of, the ED. With IS, VFO temporally coincides with the motor spasm. What is different between the two conditions is this: with IS, the ED reverts to recurring slow waves, as occurring before the ED, whereas with focal seizures the ED instead evolves into an electrographic seizure, containing high-amplitude synchronized bursts, having superimposed VFO. We used in vitro data to help understand these patterns, as such data suggest cellular mechanisms for delta waves, for VFO, for seizure-related burst complexes containing VFO, and, more recently, for the ED. We propose a unifying mechanistic hypothesis - emphasizing the importance of brain pH - to explain the commonalities and differences of EEG signals in IS versus focal seizures.
Collapse
Affiliation(s)
- Roger D Traub
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Friederike Moeller
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard Rosch
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, London SE1 1UL, UK
| | - Torsten Baldeweg
- Institute of Child Health, University College London, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Stephen P Hall
- Hull York Medical School, University of York, Heslington YO10 5DD, UK
| |
Collapse
|
14
|
Madhusudanan P, Raju G, Shankarappa S. Hydrogel systems and their role in neural tissue engineering. J R Soc Interface 2020; 17:20190505. [PMID: 31910776 PMCID: PMC7014813 DOI: 10.1098/rsif.2019.0505] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
Neural tissue engineering (NTE) is a rapidly progressing field that promises to address several serious neurological conditions that are currently difficult to treat. Selecting the right scaffolding material to promote neural and non-neural cell differentiation as well as axonal growth is essential for the overall design strategy for NTE. Among the varieties of scaffolds, hydrogels have proved to be excellent candidates for culturing and differentiating cells of neural origin. Considering the intrinsic resistance of the nervous system against regeneration, hydrogels have been abundantly used in applications that involve the release of neurotrophic factors, antagonists of neural growth inhibitors and other neural growth-promoting agents. Recent developments in the field include the utilization of encapsulating hydrogels in neural cell therapy for providing localized trophic support and shielding neural cells from immune activity. In this review, we categorize and discuss the various hydrogel-based strategies that have been examined for neural-specific applications and also highlight their strengths and weaknesses. We also discuss future prospects and challenges ahead for the utilization of hydrogels in NTE.
Collapse
Affiliation(s)
| | | | - Sahadev Shankarappa
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
15
|
Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharm Dev Technol 2019; 25:116-132. [DOI: 10.1080/10837450.2019.1682607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zahra Mohtashami
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaili
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamid Akbari Javar
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Abstract
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA.
| |
Collapse
|
17
|
Patel R, Muir M, Cvetkovic C, Krencik R. Concepts toward directing human astroplasticity to promote neuroregeneration. Dev Dyn 2018; 248:21-33. [DOI: 10.1002/dvdy.24655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
| | | | - Caroline Cvetkovic
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| |
Collapse
|
18
|
Simon-Yarza T, Giménez-Marqués M, Mrimi R, Mielcarek A, Gref R, Horcajada P, Serre C, Couvreur P. A Smart Metal-Organic Framework Nanomaterial for Lung Targeting. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Teresa Simon-Yarza
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
| | - Mónica Giménez-Marqués
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Rhizlaine Mrimi
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
| | - Angelika Mielcarek
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires; Université Paris-Sud, UMR CNRS 8214; 91405 Orsay Cedex France
| | - Patricia Horcajada
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- IMDEA Energy; Avda. Ramon de la Sagra 3 28035 Móstoles Madrid Spain
| | - Christian Serre
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Patrick Couvreur
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
| |
Collapse
|
19
|
Simon-Yarza T, Giménez-Marqués M, Mrimi R, Mielcarek A, Gref R, Horcajada P, Serre C, Couvreur P. A Smart Metal-Organic Framework Nanomaterial for Lung Targeting. Angew Chem Int Ed Engl 2017; 56:15565-15569. [DOI: 10.1002/anie.201707346] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Teresa Simon-Yarza
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
| | - Mónica Giménez-Marqués
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Rhizlaine Mrimi
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
| | - Angelika Mielcarek
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires; Université Paris-Sud, UMR CNRS 8214; 91405 Orsay Cedex France
| | - Patricia Horcajada
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- IMDEA Energy; Avda. Ramon de la Sagra 3 28035 Móstoles Madrid Spain
| | - Christian Serre
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Patrick Couvreur
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
| |
Collapse
|