1
|
Sun J, Han Y, Dong J, Lv S, Zhang R. Melanin/melanin-like nanoparticles: As a naturally active platform for imaging-guided disease therapy. Mater Today Bio 2023; 23:100894. [PMID: 38161509 PMCID: PMC10755544 DOI: 10.1016/j.mtbio.2023.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The development of biocompatible and efficient nanoplatforms that combine diagnostic and therapeutic functions is of great importance for precise disease treatment. Melanin, an endogenous biopolymer present in living organisms, has attracted increasing attention as a versatile bioinspired functional platform owing to its unique physicochemical properties (e.g., high biocompatibility, strong chelation of metal ions, broadband light absorption, high drug binding properties) and inherent antioxidant, photoprotective, anti-inflammatory, and anti-tumor effects. In this review, the fundamental physicochemical properties and preparation methods of natural melanin and melanin-like nanoparticles were outlined. A systematical description of the recent progress of melanin and melanin-like nanoparticles in single, dual-, and tri-multimodal imaging-guided the visual administration and treatment of osteoarthritis, acute liver injury, acute kidney injury, acute lung injury, brain injury, periodontitis, iron overload, etc. Was then given. Finally, it concluded with a reasoned discussion of current challenges toward clinical translation and future striving directions. Therefore, this comprehensive review provides insight into the current status of melanin and melanin-like nanoparticles research and is expected to optimize the design of novel melanin-based therapeutic platforms and further clinical translation.
Collapse
Affiliation(s)
- Jinghua Sun
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Shuxin Lv
- Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- The Radiology Department of Shanxi Provincial People’ Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
2
|
Laha SS, Thorat ND, Singh G, Sathish CI, Yi J, Dixit A, Vinu A. Rare-Earth Doped Iron Oxide Nanostructures for Cancer Theranostics: Magnetic Hyperthermia and Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104855. [PMID: 34874618 DOI: 10.1002/smll.202104855] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/11/2021] [Indexed: 05/27/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively investigated during the last couple of decades because of their potential applications across various disciplines ranging from spintronics to nanotheranostics. However, pure iron oxide nanoparticles cannot meet the requirement for practical applications. Doping is considered as one of the most prominent and simplest techniques to achieve optimized multifunctional properties in nanomaterials. Doped iron oxides, particularly, rare-earth (RE) doped nanostructures have shown much-improved performance for a wide range of biomedical applications, including magnetic hyperthermia and magnetic resonance imaging (MRI), compared to pure iron oxide. Extensive investigations have revealed that bigger-sized RE ions possessing high magnetic moment and strong spin-orbit coupling can serve as promising dopants to significantly regulate the properties of iron oxides for advanced biomedical applications. This review provides a detailed investigation on the role of RE ions as primary dopants for engineering the structural and magnetic properties of Fe3 O4 nanoparticles to carefully introspect and correlate their impact on cancer theranostics with a special focus on magnetic hyperthermia and MRI. In addition, prospects for achieving high-performance magnetic hyperthermia and MRI are thoroughly discussed. Finally, suggestions on future work in these two areas are also proposed.
Collapse
Affiliation(s)
- Suvra S Laha
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48201, USA
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, 560012, India
| | - Nanasaheb D Thorat
- Nuffield Department of Women's & Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - C I Sathish
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ambesh Dixit
- Department of Physics, Indian Institute of Technology, Jodhpur, 342037, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
3
|
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:393. [PMID: 35159738 PMCID: PMC8840344 DOI: 10.3390/nano12030393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.
Collapse
Affiliation(s)
- Afifa Farooq
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Shafiya Sabah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Salam Dhou
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Nour Alsawaftah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Ghaleb Husseini
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
4
|
Tang T, Chang B, Zhang M, Sun T. Nanoprobe-mediated precise imaging and therapy of glioma. NANOSCALE HORIZONS 2021; 6:634-650. [PMID: 34110340 DOI: 10.1039/d1nh00182e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gliomas are the most common primary brain tumors in adults, accounting for 80% of primary intracranial tumors. Due to the heterogeneous and infiltrating nature of malignant gliomas and the hindrance of the blood-brain barrier (BBB), it is very difficult to accurately image and differentiate the malignancy grade of gliomas, thus significantly influencing the diagnostic accuracy and subsequent surgery or therapy. In recent years, the rapid development of emerging nanoprobes has provided a promising opportunity for the diagnosis and treatment of gliomas. After rational component regulation and surface modification, functional nanoprobes could efficiently cross the BBB, target gliomas, and realize single-modal or multimodal imaging of gliomas with high clarity. Moreover, these contrast nanoagents could also be conjugated with therapeutic drugs and cure cancerous tissues at the same time. Herein, we focus on the design strategies of nanoprobes for effective crossing of the BBB, and introduce the recent advances in the precise imaging and therapy of gliomas using functional nanoprobes. Finally, we also discuss the challenges and future directions of nanoprobe-based diagnosis and treatment of gliomas.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
5
|
Ding H, Wang D, Sadat A, Li Z, Hu X, Xu M, de Morais PC, Ge B, Sun S, Ge J, Chen Y, Qian Y, Shen C, Shi X, Huang X, Zhang RQ, Bi H. Single-Atom Gadolinium Anchored on Graphene Quantum Dots as a Magnetic Resonance Signal Amplifier. ACS APPLIED BIO MATERIALS 2021; 4:2798-2809. [PMID: 35014319 DOI: 10.1021/acsabm.1c00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A single-atom metal doped on carbonaceous nanomaterials has attracted increasing attention due to its potential applications as high-performance catalysts. However, few studies focus on the applications of such nanomaterials as nanotheranostics for simultaneous bioimaging and cancer therapy. Herein, it is pioneeringly demonstrated that the single-atom Gd anchored onto graphene quantum dots (SAGd-GQDs), with dendrite-like morphology, was successfully prepared. More importantly, the as-fabricated SAGd-GQDs exhibits a robustly enhanced longitudinal relaxivity (r1 = 86.08 mM-1 s-1) at a low Gd3+ concentration of 2 μmol kg-1, which is 25 times higher than the commercial Gd-DTPA (r1 = 3.44 mM-1 s-1). In vitro and in vivo studies suggest that the obtained SAGd-GQDs is a highly potent and contrast agent to obtain high-definition MRI, thereby opening up more opportunities for future precise clinical theranostics.
Collapse
Affiliation(s)
- Haizhen Ding
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Anwar Sadat
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Zhenzhen Li
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Xiaolong Hu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Mingsheng Xu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Paulo C de Morais
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China.,Catholic University of Brasília, Brasília, Distrito Federal 70790-160, Brazil.,University of Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Binghui Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Jiechao Ge
- Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, P. R. China
| | - Yinfeng Qian
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Chengliang Shen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, P. R. China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, P. R. China
| | - Xin Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
6
|
Caspani S, Magalhães R, Araújo JP, Sousa CT. Magnetic Nanomaterials as Contrast Agents for MRI. MATERIALS 2020; 13:ma13112586. [PMID: 32517085 PMCID: PMC7321635 DOI: 10.3390/ma13112586] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 01/17/2023]
Abstract
Magnetic Resonance Imaging (MRI) is a powerful, noninvasive and nondestructive technique, capable of providing three-dimensional (3D) images of living organisms. The use of magnetic contrast agents has allowed clinical researchers and analysts to significantly increase the sensitivity and specificity of MRI, since these agents change the intrinsic properties of the tissues within a living organism, increasing the information present in the images. Advances in nanotechnology and materials science, as well as the research of new magnetic effects, have been the driving forces that are propelling forward the use of magnetic nanostructures as promising alternatives to commercial contrast agents used in MRI. This review discusses the principles associated with the use of contrast agents in MRI, as well as the most recent reports focused on nanostructured contrast agents. The potential applications of gadolinium- (Gd) and manganese- (Mn) based nanomaterials and iron oxide nanoparticles in this imaging technique are discussed as well, from their magnetic behavior to the commonly used materials and nanoarchitectures. Additionally, recent efforts to develop new types of contrast agents based on synthetic antiferromagnetic and high aspect ratio nanostructures are also addressed. Furthermore, the application of these materials in theragnosis, either as contrast agents and controlled drug release systems, contrast agents and thermal therapy materials or contrast agents and radiosensitizers, is also presented.
Collapse
|
7
|
Melanin-based nanomaterials: The promising nanoplatforms for cancer diagnosis and therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102211. [PMID: 32320736 DOI: 10.1016/j.nano.2020.102211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 01/16/2023]
Abstract
Melanin-based nanoplatforms are biocompatible nanomaterials with a variety of unique physicochemical properties such as strong photothermal conversion ability, excellent drug binding capacity, strong metal chelation capacity, high chemical reactivity and versatile adhesion ability. These innate talents not only make melanin-based nanoplatforms be an inborn theranostic nanoagent for photoacoustic imaging-guided photothermal therapy of cancers, but also enable them to be conveniently transferred into cancer-targeting drug delivery systems and multimodality imaging nanoprobes. Due to the intriguing properties, melanin-based nanoplatforms have attracted much attention in investigations of cancer diagnosis and therapy. This review provides an overview of recent research advances in applications of melanin-based nanoplatforms in the fields of cancer diagnosis and therapy including cancer photothermal therapy, anticancer drug delivery, cancer-specific multimodal imaging and theranostics, etc. The remaining challenges and prospects of melanin-based nanoplatforms in biomedical applications are discussed at the end of this review.
Collapse
|
8
|
Meng T, Fan B, Li Q, Peng X, Xu J, Zhang R. Matrix metalloproteinase-initiated aggregation of melanin nanoparticles as highly efficient contrast agent for enhanced tumor accumulation and dual-modal imaging. J Mater Chem B 2020; 8:9888-9898. [DOI: 10.1039/d0tb01651a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MMP2-initiated size-changeable melanin nanoparticles significantly increase the T1-weighted MRI and PA signals in vivo due to enhanced tumor accumulations.
Collapse
Affiliation(s)
- Tingwei Meng
- School of Basic Medical Sciences
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Bo Fan
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Qian Li
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Xiaoyang Peng
- School of Basic Medical Sciences
- Department of Biochemistry and Molecular Biology
- Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Jun Xu
- First Hospital of Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| | - Ruiping Zhang
- Imaging Department of the Affiliated Bethune Hospital of Shanxi Medical University
- Taiyuan 030001
- People's Republic of China
| |
Collapse
|
9
|
Pellico J, Ellis CM, Davis JJ. Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1845637. [PMID: 31191182 PMCID: PMC6525923 DOI: 10.1155/2019/1845637] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality that is routinely used in clinics, providing anatomical information with micron resolution, soft tissue contrast, and deep penetration. Exogenous contrast agents increase image contrast by shortening longitudinal (T 1) and transversal (T 2) relaxation times. Most of the T 1 agents used in clinical MRI are based on paramagnetic lanthanide complexes (largely Gd-based). In moving to translatable formats of reduced toxicity, greater chemical stability, longer circulation times, higher contrast, more controlled functionalisation and additional imaging modalities, considerable effort has been applied to the development of nanoparticles bearing paramagnetic ions. This review summarises the most relevant examples in the synthesis and biomedical applications of paramagnetic nanoparticles as contrast agents for MRI and multimodal imaging. It includes the most recent developments in the field of production of agents with high relaxivities, which are key for effective contrast enhancement, exemplified through clinically relevant examples.
Collapse
Affiliation(s)
- Juan Pellico
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Connor M. Ellis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|