1
|
Man JN, Zhu J, Weng GJ, Li JJ, Zhao JW. Using gold-based nanomaterials for fighting pathogenic bacteria: from detection to therapy. Mikrochim Acta 2024; 191:627. [PMID: 39325115 DOI: 10.1007/s00604-024-06713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Owing to the unique quantum size effect and surface effect, gold-based nanomaterials (GNMs) are promising for pathogen detection and broad-spectrum antimicrobial activity. This review summarizes recent research on GNMs as sensors for detecting pathogens and as tools for their elimination. Firstly, the need for pathogen detection is briefly introduced with an overview of the physicochemical properties of gold nanomaterials. And then strategies for the application of GNMs in pathogen detection are discussed. Colorimetric, fluorescence, surface-enhanced Raman scattering (SERS) techniques, dark-field microscopy detection and electrochemical methods can enable efficient, sensitive, and specific pathogen detection. The third section describes the antimicrobial applications of GNMs. They can be used for antimicrobial agent delivery and photothermal conversion and can act synergistically with photosensitizers to achieve the precise killing of pathogens. In addition, GNMs are promising for integrated pathogen detection and treatment; for example, combinations of colorimetric or SERS detection with photothermal sterilization have been demonstrated. Finally, future outlooks for the applications of GNMs in pathogen detection and treatment are summarized.
Collapse
Affiliation(s)
- Jia-Ni Man
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Zhan Y, Hu H, Yu Y, Chen C, Zhang J, Jarnda KV, Ding P. Therapeutic strategies for drug-resistant Pseudomonas aeruginosa: Metal and metal oxide nanoparticles. J Biomed Mater Res A 2024; 112:1343-1363. [PMID: 38291785 DOI: 10.1002/jbm.a.37677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Pseudomonas aeruginosa (PA) is a widely prevalent opportunistic pathogen. Multiple resistant strains of PA have emerged from excessive or inappropriate use of antibiotics, making their eradication increasingly difficult. Therefore, the search for highly efficient and secure novel antimicrobial agents is crucial. According to reports, there is an increasing exploration of nanometals for antibacterial purposes. The antibacterial mechanisms involving the nanomaterials themselves, the release of ions, and the induced oxidative stress causing leakage and damage to biomolecules are widely accepted. Additionally, the study of the cytotoxicity of metal nanoparticles is crucial for their antibacterial applications. This article summarizes the types of metal nanomaterials and metal oxide nanomaterials that can be used against PA, their respective unique antibacterial mechanisms, cytotoxicity, and efforts made to improve antibacterial performance and reduce toxicity, including combination therapy with other materials and antibiotics, as well as green synthesis approaches.
Collapse
Affiliation(s)
- Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Huiting Hu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Kermue Vasco Jarnda
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
3
|
Anwar Y, Jaha HF, Ul-Islam M, Kamal T, Khan SB, Ullah I, Al-Maaqar SM, Ahmed S. Development of silver-doped copper oxide and chitosan nanocomposites for enhanced antimicrobial activities. Z NATURFORSCH C 2024; 79:137-148. [PMID: 38820053 DOI: 10.1515/znc-2023-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a significant and pressing public health concern, posing serious challenges to effectively preventing and treating persistent diseases. Despite various efforts made in recent years to address this problem, the global trends of AMR continue to escalate without any indication of decline. As AMR is well-known for antibiotics, developing new materials such as metal containing compounds with different mechanisms of action is crucial to effectively address this challenge. Copper, silver, and chitosan in various forms have demonstrated significant biological activities and hold promise for applications in medicine and biotechnology. Exploring the biological properties of these nanoparticles is essential for innovative therapeutic approaches in treating bacterial and fungal infections, cancer, and other diseases. To this end, the present study aimed to synthesize silver@copper oxide (Ag@CuO) nanoparticles and its chitosan nanocomposite (Chi-Ag@CuO) to investigate their antimicrobial efficacy. Various established spectroscopic and microscopic methods were employed for characterization purposes, encompassing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Subsequently, the antimicrobial activity of the nanoparticles was assessed through MIC (minimum inhibitory concentration), MBC (minimum bactericidal concentration), and well-disk diffusion assays against Pseudomonas aeruginosa, Acinetobacter baumannii Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans. The size of the CuO-NPs, Ag@CuO, and Chi-Ag@CuO NPs was found to be 70-120 nm with a spherical shape and an almost uniform distribution. The nanocomposites were found to possess a minimum inhibitory concentration (MIC) of 5 μg/mL and a minimum bactericidal concentration (MBC) of 250 μg/mL. Moreover, these nanocomposites generated varying clear inhibition zones, with diameters ranging from a minimum of 9 ± 0.5 mm to a maximum of 25 ± 0.5 mm. Consequently, it is evident that the amalgamation of copper-silver-chitosan nanoparticles has exhibited noteworthy antimicrobial properties in the controlled laboratory environment, surpassing the performance of other types of nanoparticles.
Collapse
Affiliation(s)
- Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham Faiz Jaha
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Şalālah 211, Oman
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ihsan Ullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh M Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, Faculty of Education, Albaydha University, Al-Baydha, Yemen
| | - Sameer Ahmed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Hajfathalian M, de Vries CR, Hsu JC, Amirshaghaghi A, Dong YC, Ren Z, Liu Y, Huang Y, Li Y, Knight SA, Jonnalagadda P, Zlitni A, Grice EA, Bollyky PL, Koo H, Cormode DP. Theranostic gold-in-gold cage nanoparticles enable photothermal ablation and photoacoustic imaging in biofilm-associated infection models. J Clin Invest 2023; 133:e168485. [PMID: 37651187 PMCID: PMC10617778 DOI: 10.1172/jci168485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we described a complex structure of a dextran-coated gold-in-gold cage nanoparticle that enabled photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser could selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observed a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections, respectively. These effects were over 100 times greater than those seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We concluded that photothermal ablation using theranostic nanoparticles is a rapid, precise, and nontoxic method to detect and treat biofilm-associated infections.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California, USA
| | - Christiaan R. de Vries
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California, USA
| | - Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Zhi Ren
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - Yuan Liu
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - Yue Huang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - Yong Li
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - Simon A.B. Knight
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Aimen Zlitni
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Elizabeth A. Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, and
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering
| |
Collapse
|
5
|
Mammari N, Duval RE. Photothermal/Photoacoustic Therapy Combined with Metal-Based Nanomaterials for the Treatment of Microbial Infections. Microorganisms 2023; 11:2084. [PMID: 37630644 PMCID: PMC10458754 DOI: 10.3390/microorganisms11082084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The increased spread and persistence of bacterial drug-resistant phenotypes remains a public health concern and has contributed significantly to the challenge of combating antibiotic resistance. Nanotechnology is considered an encouraging strategy in the fight against antibiotic-resistant bacterial infections; this new strategy should improve therapeutic efficacy and minimize side effects. Evidence has shown that various nanomaterials with antibacterial performance, such as metal-based nanoparticles (i.e., silver, gold, copper, and zinc oxide) have intrinsic antibacterial properties. These antibacterial agents, such as those made of metal oxides, carbon nanomaterials, and polymers, have been used not only to improve antibacterial efficacy but also to reduce bacterial drug resistance due to their interaction with bacteria and their photophysical properties. These nanostructures have been used as effective agents for photothermal therapy (PTT) and photodynamic therapy (PDT) to kill bacteria locally by heating or the controlled production of reactive oxygen species. Additionally, PTT or PDT therapies have also been combined with photoacoustic (PA) imaging to simultaneously improve treatment efficacy, safety, and accuracy. In this present review, we present, on the one hand, a summary of research highlighting the use of PTT-sensitive metallic nanomaterials for the treatment of bacterial and fungal infections, and, on the other hand, an overview of studies showing the PA-mediated theranostic functionality of metal-based nanomaterials.
Collapse
Affiliation(s)
- Nour Mammari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
6
|
Andrade S, Ramalho MJ, Santos SB, Melo LDR, Santos RS, Guimarães N, Azevedo NF, Loureiro JA, Pereira MC. Fighting Methicillin-Resistant Staphylococcus aureus with Targeted Nanoparticles. Int J Mol Sci 2023; 24:ijms24109030. [PMID: 37240376 DOI: 10.3390/ijms24109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance (AMR) is considered one of the greatest threats to global health. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, accounting for about 90% of S. aureus infections widespread in the community and hospital settings. In recent years, the use of nanoparticles (NPs) has emerged as a promising strategy to treat MRSA infections. NPs can act directly as antibacterial agents via antibiotic-independent activity and/or serve as drug delivery systems (DDSs), releasing loaded antibiotics. Nonetheless, directing NPs to the infection site is fundamental for effective MRSA treatment so that highly concentrated therapeutic agents are delivered to the infection site while directly reducing the toxicity to healthy human cells. This leads to decreased AMR emergence and less disturbance of the individual's healthy microbiota. Hence, this review compiles and discusses the scientific evidence related to targeted NPs developed for MRSA treatment.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J Ramalho
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvio B Santos
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís D R Melo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Rita S Santos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Guimarães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A Loureiro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C Pereira
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Hajfathalian M, de Vries CR, Hsu JC, Amirshaghaghi A, Dong YC, Ren Z, Liu Y, Huang Y, Li Y, Knight S, Jonnalagadda P, Zlitni A, Grice E, Bollyky PL, Koo H, Cormode DP. Theranostic gold in a gold cage nanoparticle for photothermal ablation and photoacoustic imaging of skin and oral infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539604. [PMID: 37214850 PMCID: PMC10197567 DOI: 10.1101/2023.05.05.539604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we describe a unique structure of dextran coated gold in a gold cage nanoparticle that enables photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser can selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observe a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections respectively. These effects were over 100 times greater than that seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We conclude that photothermal ablation using theranostic nanoparticles is a rapid, precise, and non-toxic method to detect and treat biofilm-associated infections.
Collapse
|
8
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
9
|
Rodriguez-Alvarez JS, Kratky L, Yates-Alston S, Sarkar S, Vogel K, Gutierrez-Aceves J, Levi N. A PEDOT nano-composite for hyperthermia and elimination of urological bacteria. BIOMATERIALS ADVANCES 2022; 139:212994. [PMID: 35882143 DOI: 10.1016/j.bioadv.2022.212994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Novel modalities for overcoming recurrent urinary tract infections associated with indwelling urinary catheters are needed, and rapidly induced hyperthermia is one potential solution. PEDOT nanotubes are a class of photothermal particles that can easily be incorporated into silicone to produce thin, uniform coating on medical grade silicone catheters; subsequent laser stimulation therein imparts temperature elevations that can eliminate bacteria and biofilms. PEDOT silicone coatings are stable following thermal sterilization and repeated heating and cooling cycles. Laser stimulation can induce temperature increases of up to 55 °C in 300 s, but only 45 s was needed for ablation of UTI inducing E. coli biofilms in vitro. This work also demonstrates that mild hyperthermia of 50 °C, applied for only 31 s in the presence of antibiotics could eliminate E. coli biofilm as effectively as high temperatures. This work culminates in the evaluation of the PEDOT NTs for photothermal elimination of E. coli in an in vivo model to demonstrate the safety and effectiveness of a photothermal nanocomposite (16 s treatment time) for rapid clearance of E. coli.
Collapse
Affiliation(s)
- Juan Sebastian Rodriguez-Alvarez
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America; Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lauren Kratky
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kenneth Vogel
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Jorge Gutierrez-Aceves
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
10
|
Arendse M, Khan S, Wani MY, Aqlan FM, Al-Bogami AS, Ahmad A. Quorum Sensing and Biofilm Disrupting Potential of Imidazole Derivatives in Chromobacterium violaceum Using Antimicrobial and Drug Discovery Approaches. Braz J Microbiol 2022; 53:565-582. [PMID: 35301694 PMCID: PMC9151946 DOI: 10.1007/s42770-022-00702-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Population of drug-resistant bacteria have increased at an alarming rate in the past few decades. The major reason for increasing drug resistance is the lack of new antibiotics and limited drug targets. It has therefore been a vital task to develop new antibiotics with different drug targets. Two such targets are biofilm formation and quorum sensing. Quorum sensing is cell to cell communication used by bacteria that initiates many important survival processes and aids in establishing pathogenesis. Both biofilm and quorum sensing are inter-related processes and play a major role in physiological and pathogenesis processes. In this study, five novel imidazole derivatives (IMA-1-IMA-5) were synthesised and tested for their antibacterial and anti-quorum sensing activities against Chromobacterium violaceum using different in silico and in vitro techniques following the standard protocols. In silico results revealed that all compounds were able to effectively bind to and interact sufficiently with the target protein CviR. CviR is a protein to which autoinducers bind to initiate the quorum sensing process. In silico results also revealed that the compounds generated favourable structural dynamics implying that the compounds would be able to effectively bind to CviR and inhibit quorum sensing. Susceptibility results revealed that IMA-1 is the most active of all the derivatives against both planktonic cells and biofilms. Qualitative and quantitative evaluation of anti-quorum sensing activity at sub-inhibitory concentrations of these compounds also revealed high activity for IMA-1. Down-regulation of most of the quorum sensing genes when cells were treated with the test compounds affirmed the high anti-quorum sensing activities of these compounds. The results from this study are promising and urges on the use of anti-quorum sensing and biofilm disrupting molecules to combat multi-drug resistance problem.
Collapse
Affiliation(s)
- Madison Arendse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Shama Khan
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Kingdom of Saudi Arabia.
| | - Faisal Mohammed Aqlan
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa.
| |
Collapse
|
11
|
Biofilm Formation by Pathogenic Bacteria: Applying a Staphylococcus aureus Model to Appraise Potential Targets for Therapeutic Intervention. Pathogens 2022; 11:pathogens11040388. [PMID: 35456063 PMCID: PMC9027693 DOI: 10.3390/pathogens11040388] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/02/2023] Open
Abstract
Carried in the nasal passages by up to 30% of humans, Staphylococcus aureus is recognized to be a successful opportunistic pathogen. It is a frequent cause of infections of the upper respiratory tract, including sinusitis, and of the skin, typically abscesses, as well as of food poisoning and medical device contamination. The antimicrobial resistance of such, often chronic, health conditions is underpinned by the unique structure of bacterial biofilm, which is the focus of increasing research to try to overcome this serious public health challenge. Due to the protective barrier of an exopolysaccharide matrix, bacteria that are embedded within biofilm are highly resistant both to an infected individual’s immune response and to any treating antibiotics. An in-depth appraisal of the stepwise progression of biofilm formation by S. aureus, used as a model infection for all cases of bacterial antibiotic resistance, has enhanced understanding of this complicated microscopic structure and served to highlight possible intervention targets for both patient cure and community infection control. While antibiotic therapy offers a practical means of treatment and prevention, the most favorable results are achieved in combination with other methods. This review provides an overview of S. aureus biofilm development, outlines the current range of anti-biofilm agents that are used against each stage and summarizes their relative merits.
Collapse
|
12
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles. Front Microbiol 2022; 13:841124. [PMID: 35295305 PMCID: PMC8919054 DOI: 10.3389/fmicb.2022.841124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial biofilm is a tri-dimensional complex community of cells at different metabolic stages involved in a matrix of self-produced extracellular polymeric substances. Biofilm formation is part of a defense mechanism that allows the bacteria to survive in hostile environments, such as increasing resistance or tolerance to antimicrobial agents, causing persistent infections hard to treat and impair disease eradication. One such example is bovine mastitis associated with Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), whose worldwide health and economic impact is on the surge. As such, non-conventional nanobased approaches have been proposed as an alternative to tackle biofilm formation and to which pathogenic bacteria fail to adapt. Among these, metallic nanoparticles have gained significant attention, particularly gold and silver nanoparticles, due to their ease of synthesis and impact against microorganism growth. This study provides a proof-of-concept investigation into the use of gold-silver alloy nanoparticles (AuAgNPs) toward eradication of bacterial biofilms. Upon visible light irradiation of AuAgNPs there was considerable disturbance of the biofilms' matrix. The hindering of structural integrity of the biofilm matrix resulted in an increased permeability for entry of antibiotics, which then cause the eradication of biofilm and inhibit subsequent biofilm formation. Additionally, our results that AuAgNPs inhibited the formation of SDSD biofilms via distinct stress pathways that lead to the downregulation of two genes critical for biofilm production, namely, brpA-like encoding biofilm regulatory protein and fbpA fibronectin-binding protein A. This study provides useful information to assist the development of nanoparticle-based strategies for the active treatment of biofilm-related infections triggered by photoirradiation in the visible.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alexandra R. Fernandes
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
13
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
14
|
Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11010069. [PMID: 35052946 PMCID: PMC8773207 DOI: 10.3390/antibiotics11010069] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Surgical site infections (SSIs) are common postoperative occurrences due to contamination of the surgical wound or implanted medical devices with community or hospital-acquired microorganisms, as well as other endogenous opportunistic microbes. Despite numerous rules and guidelines applied to prevent these infections, SSI rates are considerably high, constituting a threat to the healthcare system in terms of morbidity, prolonged hospitalization, and death. Approximately 80% of human SSIs, including chronic wound infections, are related to biofilm-forming bacteria. Biofilm-associated SSIs are extremely difficult to treat with conventional antibiotics due to several tolerance mechanisms provided by the multidrug-resistant bacteria, usually arranged as polymicrobial communities. In this review, novel strategies to control, i.e., prevent and eradicate, biofilms in SSIs are presented and discussed, focusing mainly on two attractive approaches: the use of nanotechnology-based composites and natural plant-based products. An overview of new therapeutic agents and strategic approaches to control epidemic multidrug-resistant pathogenic microorganisms, particularly when biofilms are present, is provided alongside other combinatorial approaches as attempts to obtain synergistic effects with conventional antibiotics and restore their efficacy to treat biofilm-mediated SSIs. Some detection and real-time monitoring systems to improve biofilm control strategies and diagnosis of human infections are also discussed.
Collapse
|
15
|
Maleki A, He J, Bochani S, Nosrati V, Shahbazi MA, Guo B. Multifunctional Photoactive Hydrogels for Wound Healing Acceleration. ACS NANO 2021; 15:18895-18930. [PMID: 34870413 DOI: 10.1021/acsnano.1c08334] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light is an attractive tool that has a profound impact on modern medicine. Particularly, light-based photothermal therapy (PTT) and photodynamic therapy (PDT) show great application prospects in the prevention of wound infection and promoting wound healing. In addition, hydrogels have shown attractive advantages in the field of wound dressings due to their excellent biochemical effects. Therefore, multifunctional photoresponsive hydrogels (MPRHs) that integrate the advantages of light and hydrogels are increasingly used in biomedicine, especially in the field of wound repair. However, a comprehensive review of MPRHs for wound regeneration is still lacking. This review first focuses on various types of MPRHs prepared by diverse photosensitizers, photothermal agents (PHTAs) including transition metal sulfide/oxides nanomaterials, metal nanostructure-based PHTAs, carbon-based PHTAs, conjugated polymer or complex-based PHTAs, and/or photodynamic agents (PHDAs) such as ZnO-based, black-phosphorus-based, TiO2-based, and small organic molecule-based PHDAs. We also then discuss how PTT, PDT, and photothermal/photodynamic synergistic therapy can modulate the microenvironments of bacteria to inhibit infection. Overall, multifunctional hydrogels with both therapeutic and tissue regeneration capabilities have been discussed and existing challenges, as well as future research directions in the field of MPRHs and their application in wound management are argued.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Jiahui He
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Shayesteh Bochani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Vahideh Nosrati
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| |
Collapse
|
16
|
Kaur K, Reddy S, Barathe P, Shriram V, Anand U, Proćków J, Kumar V. Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Front Microbiol 2021; 12:747019. [PMID: 34867863 PMCID: PMC8633304 DOI: 10.3389/fmicb.2021.747019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Injudicious use of antibiotics has been the main driver of severe bacterial non-susceptibility to commonly available antibiotics (known as drug resistance or antimicrobial resistance), a global threat to human health and healthcare. There is an increase in the incidence and levels of resistance to antibacterial drugs not only in nosocomial settings but also in community ones. The drying pipeline of new and effective antibiotics has further worsened the situation and is leading to a potentially "post-antibiotic era." This requires novel and effective therapies and therapeutic agents for combating drug-resistant pathogenic microbes. Nanomaterials are emerging as potent antimicrobial agents with both bactericidal and potentiating effects reported against drug-resistant microbes. Among them, the photothermally active nanomaterials (PANs) are gaining attention for their broad-spectrum antibacterial potencies driven mainly by the photothermal effect, which is characterized by the conversion of absorbed photon energy into heat energy by the PANs. The current review capitalizes on the importance of using PANs as an effective approach for overcoming bacterial resistance to drugs. Various PANs leveraging broad-spectrum therapeutic antibacterial (both bactericidal and synergistic) potentials against drug-resistant pathogens have been discussed. The review also provides deeper mechanistic insights into the mechanisms of the action of PANs against a variety of drug-resistant pathogens with a critical evaluation of efflux pumps, cell membrane permeability, biofilm, and quorum sensing inhibition. We also discuss the use of PANs as drug carriers. This review also discusses possible cytotoxicities related to the therapeutic use of PANs and effective strategies to overcome this. Recent developments, success stories, challenges, and prospects are also presented.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
17
|
Klein I, Sarkar S, Gutierrez-Aceves J, Levi N. Photothermal nanoparticles for ablation of bacteria associated with kidney stones. Int J Hyperthermia 2021; 38:760-770. [PMID: 33971781 DOI: 10.1080/02656736.2021.1916099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To determine whether photothermal polymer nanoparticles (NPs) can interface with bacteria associated with kidney stones, generate heat when stimulated with near infrared (NIR) light, and aid in reducing bacterial burden. METHODS Two types of kidney stones, artificial, and those removed during percutaneous nephrolithotomy (PCNL), were inoculated with Escherichia coli (E. coli) and then incubated with NPs composed of FITC-labeled Poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']-dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe). Association of the PCPDTBSe NPs was evaluated using fluorescence microscopy. Infected stones were incubated with NPs and exposed to 800 nm light to generate temperature increases from 25.4 to 68.6 °C on the stones. Following photothermal treatment, the stones were homogenized and the bacteria was enumerated via colony counting assays to evaluate the bactericidal effect. The photothermal effect was also evaluated using scanning electron microscopy of the treated biofilms. RESULTS Both kidney stone types sequestered E. coli. Control stones and stones treated with laser only had growth of numerous bacterial colonies, while stones exposed to NPs and laser grew significantly less, or none (p = 0.02). CONCLUSIONS The polymer NPs interface with E. coli on artificial and patient-derived kidney stones, and they can impart a bactericidal effect, when stimulated with NIR to generate heat. This technique may possibly be extended to treating infected kidney stones in patients.
Collapse
Affiliation(s)
- Ilan Klein
- Department of Urology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
18
|
Exploitation of Antimicrobial Nanoparticles and Their Applications in Biomedical Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104520] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibiotic resistance is a major threat to public health, which contributes largely to increased mortality rates and costs in hospitals. The severity and widespread nature of antibiotic resistance result in limited treatments to effectively combat antibiotic-resistant pathogens. Nanoparticles have different or enhanced properties in contrast to their bulk material, including antimicrobial efficacy towards a broad range of microorganisms. Their beneficial properties can be utilised in various bioengineering technologies. Thus, antimicrobial nanoparticles may provide an alternative to challenge antibiotic resistance. Currently, nanoparticles have been incorporated into materials, such as fibres, glass and paints. However, more research is required to elucidate the mechanisms of action fully and to advance biomedical applications further. This paper reviews the antimicrobial efficacies and the intrinsic properties of different metallic nanoparticles, their potential mechanisms of action against certain types of harmful pathogens and how these properties may be utilised in biomedical and healthcare products with the aim to reduce cross contaminations, disease transmissions and usage of antibiotics.
Collapse
|
19
|
Guan G, Win KY, Yao X, Yang W, Han M. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Adv Healthc Mater 2021; 10:e2001158. [PMID: 33184997 DOI: 10.1002/adhm.202001158] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Indexed: 12/11/2022]
Abstract
With the wide utilization of antibiotics, antibiotic-resistant bacteria have been often developed more frequently to cause potential global catastrophic consequences. Emerging photothermal ablation has been attracting extensive research interest for quick/effective eradication of pathogenic bacteria from contaminated surroundings and infected body. In this field, anisotropic gold nanostructures with tunable size/morphologies have been demonstrated to exhibit their outstanding photothermal performance through strong plasmonic absorption of near-infrared (NIR) light, efficient light to heat conversion, and easy surface modification for targeting bacteria. To this end, this review first introduces thermal treatment of infectious diseases followed by photothermal therapy via heat generation on NIR-absorbing gold nanostructures. Then, the usual synthesis and spectral features of diversified gold nanostructures and composites are systematically overviewed with the emphasis on the importance of size, shape, and composition to achieve strong plasmonic absorption in NIR region. Further, the innovated photothermal applications of gold nanostructures are comprehensively demonstrated to combat against bacterial infections, and some constructive suggestions are also discussed to improve photothermal technologies for practical applications.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Khin Yin Win
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| | - Xiang Yao
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Ming‐Yong Han
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
20
|
Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release 2020; 328:251-262. [DOI: 10.1016/j.jconrel.2020.08.055] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
|
21
|
Cui T, Wu S, Sun Y, Ren J, Qu X. Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm In Vivo. NANO LETTERS 2020; 20:7350-7358. [PMID: 32856923 DOI: 10.1021/acs.nanolett.0c02767] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Increasing penetration of antibacterial agents into biofilm is a promising strategy for improvement of therapeutic effect and slowdown of the progression of antibiotic resistance. Herein, we design a near-infrared (NIR) light-driven nanoswimmer (HSMV). Under NIR light irradiation, HSMV performs efficient self-propulsion and penetrates into the biofilm within 5 min due to photothermal conversion of asymmetrically distributed AuNPs. The localized thermal (∼45 °C) and thermal-triggered release of vancomycin (Van) leads to an efficient combination of photothermal therapy and chemotherapy in one system. The active motion of HSMV increases the effective distance of photothermal therapy (PTT) and also improves the therapeutic index of the antibiotic, resulting in superior biofilm removal rate (>90%) in vitro. Notably, HSMV can eliminate S. aureus biofilms grown in vivo under 10 min of laser irradiation without damage to healthy tissues. This work may shed light on therapeutic strategies for in vivo treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Si Wu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
23
|
Khasawneh AI, Himsawi N, Abu-Raideh J, Salameh MA, Al-Tamimi M, Al Haj Mahmoud S, Saleh T. Status of Biofilm-Forming Genes among Jordanian Nasal Carriers of Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus. IRANIAN BIOMEDICAL JOURNAL 2020; 24:386-98. [PMID: 32660224 PMCID: PMC7601545 DOI: 10.29252/ibj.24.6.381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Biofilm formation in Staphylococcusaureus is a major virulence factor. Both MSSA and MRSA are common causes of community- and hospital-acquired infections and are associated with biofilm formation. The status of biofilm-forming genes has not been explored in Jordanian nasal carriers of S. aureus. This study investigates antibiotic resistance patterns and the prevalence of biofilm-forming genes between MSSA and MRSA in two distinct populations in Jordan. Methods: A total of 35 MSSA and 22 MRSA isolates were recovered from hospitalized patients and medical students at Prince Hamzah Hospital, Jordan. Antibiotic susceptibility was tested using disk diffusion method and Vitek 2 system. The phenotypic biofilm formation was tested using CRA and microtiter plate assays. The prevalence of the biofilm-forming genes was determined using multiplex PCR. Results: Among 57 S.aureus isolates, 22 (38.6%) isolates were MRSA and were highly resistant against benzylpenicillin, oxacillin, and imipenem. The frequencies of the icaADBC were 77.1%, 97.1%, 94.3%, and 97.1% respectively in MSSA compared to 86.4%, 100%, 100%, and 100% in MRSA isolates. On the other hand, the frequency of the fnbA, fnbB, clfA, fib, clfB, ebps, eno, and cna genes was 81.8%, 90.9%, 95.5%, 90.9%, 86.4%, 100%, 100%, and 40.9%, respectively in the MRSA isolates. Conclusion: In both groups, MRSA isolates, in comparison to MSSA, were significantly more resistant to cefoxitin, oxacillin, imipenem, tetracycline, clindamycin, and trimethoprim-sulfamethoxazole. Unexpectedly, biofilm formation and gene prevalence between MRSA and MSSA isolates showed no significant difference, suggesting other potential virulence mechanisms.
Collapse
Affiliation(s)
- Ashraf I Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Nisreen Himsawi
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Jumana Abu-Raideh
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Muna A Salameh
- Department of Basic Medical Sciences, College of Medicine, Al-Balqa' Applied University, Al-Salt, Jordan
| | - Mohammad Al-Tamimi
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Sciences, College of Medicine, Al-Balqa' Applied University, Al-Salt, Jordan
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| |
Collapse
|
24
|
Ricciardi BF, Muthukrishnan G, Masters EA, Kaplan N, Daiss JL, Schwarz EM. New developments and future challenges in prevention, diagnosis, and treatment of prosthetic joint infection. J Orthop Res 2020; 38:1423-1435. [PMID: 31965585 PMCID: PMC7304545 DOI: 10.1002/jor.24595] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/03/2020] [Indexed: 02/04/2023]
Abstract
Prosthetic joint infection (PJI) is a devastating complication that results in substantial costs to society and patient morbidity. Advancements in our knowledge of this condition have focused on prevention, diagnosis, and treatment, in order to reduce rates of PJI and improve patient outcomes. Preventive measures such as optimization of patient comorbidities, and perioperative antibiotic usage are intensive areas of current clinical research to reduce the rate of PJI. Improved diagnostic tests such as synovial fluid (SF) α-defensin enzyme-linked immunosorbent assay, and nucleic acid-based tests for serum, SF, and tissue cultures, have improved diagnostic accuracy and organism identification. Increasing the diversity of available antibiotic therapy, immunotherapy, and alternative implant coatings remain promising treatments to improve infection eradication in the setting of PJI.
Collapse
Affiliation(s)
- Benjamin F Ricciardi
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Elysia A Masters
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Nathan Kaplan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| |
Collapse
|
25
|
Ngo-Duc TT, Alibay Z, Plank JM, Cheeney JE, Haberer ED. Gold-Decorated M13 I-Forms and S-Forms for Targeted Photothermal Lysis of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:126-134. [PMID: 31800209 DOI: 10.1021/acsami.9b15682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the emergence of multidrug-resistant bacteria, photothermal therapy has been proposed as an alternative to antibiotics for targeting and killing pathogens. In this study, two M13 bacteriophage polymorphs were studied as nanoscaffolds for plasmonic bactericidal agents. Receptor-binding proteins found on the pIII minor coat protein targeted Escherichia coli bacteria with F-pili (F+ strain), while a gold-binding peptide motif displayed on the pVIII major coat protein templated Au nanoparticles. Temperature-dependent exposure to a chloroform-water interface transformed the native filamentous phage into either rod-like or spheroid structures. The morphology, geometry, and size of the polymorphs, as well as the receptor-binding protein and host cell receptor interaction were studied using electron microscopy. Au/template structures were formed through incubation with Au colloid, and optical absorbance was measured. Despite the closely packed Au nanoparticle layer on the surface the viral scaffolds, electron microscopy confirmed that host receptor affinity was retained. Photothermal bactericidal studies were performed using 532 nm laser irradiation with a variety of powers and exposure times. Bacterial viability was assessed using colony count. With the shape-modified M13 scaffolds, up to 64% of E. coli were killed within 20 min. These studies demonstrate the promise of i-form and s-form polymorphs for the directed plasmonic-based photothermal killing of bacteria.
Collapse
Affiliation(s)
- Tam-Triet Ngo-Duc
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Zaira Alibay
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Joshua M Plank
- Department of Electrical and Computer Engineering , University of California , Riverside 92521 , United States
| | - Joseph Earl Cheeney
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Elaine D Haberer
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
- Department of Electrical and Computer Engineering , University of California , Riverside 92521 , United States
| |
Collapse
|