1
|
Salvador C, Andreozzi P, Romero G, Loinaz I, Dupin D, Moya SE. Self-Assembled Oleic Acid-Modified Polyallylamines for Improved siRNA Transfection Efficiency and Lower Cytotoxicity. ACS APPLIED BIO MATERIALS 2023; 6:529-542. [PMID: 36647574 PMCID: PMC9945087 DOI: 10.1021/acsabm.2c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Small interference RNA (siRNA) is a tool for gene modulation, which can silence any gene involved in genetic disorders. The potential of this therapeutic tool is hampered by RNA instability in the blood stream and difficulties to reach the cytosol. Polyamine-based nanoparticles play an important role in gene delivery. Polyallylamine hydrochloride (PAH) is a polycation displaying primary amines that can be easily chemically modified to match the balance between cell viability and siRNA transfection. In this work, PAH has been covalently functionalized with oleic acid at different molar ratios by carbodiimide chemistry. The substituted polymers form polyplexes that keep positive surface charge and fully encapsulate siRNA. Oleic acid substitution improves cell viability in the pulmonary cell line A549. Moreover, 6 and 14% of oleic acid substitution show an improvement in siRNA transfection efficiency. CD47 is a ubiquitous protein which acts as "don't eat me signal." SIRPα protein of macrophages recognizes CD47, leading to tumor cell phagocytosis by macrophages. By knocking down CD47 with siRNA, cancer cells become vulnerable to be eliminated by the immune system. PAH-oleic acid substitutes show high efficacy in silencing the CD47 protein, making them a potential candidate for immunotherapy.
Collapse
Affiliation(s)
- Cristian Salvador
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain,CIDETEC,
Basque Research and Technology Alliance (BRTA), Parque Científico
y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián20014, Spain
| | - Patrizia Andreozzi
- Consorzio
Sistemi a Grande Interfase, Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3, Sesto Fiorentino50019, Florence, Italy
| | - Gabriela Romero
- Department
of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio78249, Texas, United States
| | - Iraida Loinaz
- CIDETEC,
Basque Research and Technology Alliance (BRTA), Parque Científico
y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián20014, Spain
| | - Damien Dupin
- CIDETEC,
Basque Research and Technology Alliance (BRTA), Parque Científico
y Tecnológico de Gipuzkoa, Miramon Pasealekua, 196, Donostia-San Sebastián20014, Spain,. Phone: +34 943 30 90 22
| | - Sergio E. Moya
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain,. Phone: +34 943 00 53 11
| |
Collapse
|
2
|
Nanoparticle-Mediated Delivery of STAT3 Inhibitors in the Treatment of Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14122787. [PMID: 36559280 PMCID: PMC9781630 DOI: 10.3390/pharmaceutics14122787] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is a common malignancy worldwide, with high morbidity and mortality. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor that not only regulates different hallmarks of cancer, such as tumorigenesis, cell proliferation, and metastasis but also regulates the occurrence and maintenance of cancer stem cells (CSCs). Abnormal STAT3 activity has been found in a variety of cancers, including lung cancer, and its phosphorylation level is associated with a poor prognosis of lung cancer. Therefore, the STAT3 pathway may represent a promising therapeutic target for the treatment of lung cancer. To date, various types of STAT3 inhibitors, including natural compounds, small molecules, and gene-based therapies, have been developed through direct and indirect strategies, although most of them are still in the preclinical or early clinical stages. One of the main obstacles to the development of STAT3 inhibitors is the lack of an effective targeted delivery system to improve their bioavailability and tumor targetability, failing to fully demonstrate their anti-tumor effects. In this review, we will summarize the recent advances in STAT3 targeting strategies, as well as the applications of nanoparticle-mediated targeted delivery of STAT3 inhibitors in the treatment of lung cancer.
Collapse
|
3
|
Ye Z, Abdelmoaty MM, Curran SM, Dyavar SR, Kumar D, Alnouti Y, Coulter DW, Podany AT, Singh RK, Vetro JA. Direct Comparison of Chol-siRNA Polyplexes and Chol-DsiRNA Polyplexes Targeting STAT3 in a Syngeneic Murine Model of TNBC. Noncoding RNA 2022; 8:8. [PMID: 35076584 PMCID: PMC8788547 DOI: 10.3390/ncrna8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
RNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3'-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation. Here, we directly compared the activities of Chol-siRNA polyplexes and Chol-DsiRNA polyplexes in primary murine 4T1 breast tumors against STAT3, a therapeutically relevant target gene that is overexpressed in many solid tumors, including breast cancer. We found that Chol-siSTAT3 polyplexes suppressed STAT3 mRNA in 4T1 tumors with similar potency (half-maximal ED50 0.3 mg/kg) and kinetics (over 96 h) as Chol-DsiSTAT3 polyplexes, but with slightly lower activity against total Stat3 protein (29% vs. 42% suppression) and tumor growth (11.5% vs. 8.6% rate-based T/C ratio) after repeated IV administration of equimolar, tumor-saturating doses every other day. Thus, both Chol-siRNA polyplexes and Chol-DsiRNA polyplexes may be suitable clinical candidates for the RNAi therapy of breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Zhen Ye
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Z.Y.); (M.M.A.); (S.M.C.); (D.K.); (Y.A.)
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Z.Y.); (M.M.A.); (S.M.C.); (D.K.); (Y.A.)
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza 12622, Egypt
| | - Stephen M. Curran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Z.Y.); (M.M.A.); (S.M.C.); (D.K.); (Y.A.)
| | - Shetty Ravi Dyavar
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.R.D.); (A.T.P.)
| | - Devendra Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Z.Y.); (M.M.A.); (S.M.C.); (D.K.); (Y.A.)
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Z.Y.); (M.M.A.); (S.M.C.); (D.K.); (Y.A.)
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Don W. Coulter
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Anthony T. Podany
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.R.D.); (A.T.P.)
| | - Rakesh K. Singh
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph A. Vetro
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Z.Y.); (M.M.A.); (S.M.C.); (D.K.); (Y.A.)
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|