1
|
Zhang X, An M, Zhang J, Zhao Y, Liu Y. Nano-medicine therapy reprogramming metabolic network of tumour microenvironment: new opportunity for cancer therapies. J Drug Target 2024; 32:241-257. [PMID: 38251656 DOI: 10.1080/1061186x.2024.2309565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 01/23/2024]
Abstract
Metabolic heterogeneity is one of the characteristics of tumour cells. In order to adapt to the tumour microenvironment of hypoxia, acidity and nutritional deficiency, tumour cells have undergone extensive metabolic reprogramming. Metabolites involved in tumour cell metabolism are also very different from normal cells, such as a large number of lactate and adenosine. Metabolites play an important role in regulating the whole tumour microenvironment. Taking metabolites as the target, it aims to change the metabolic pattern of tumour cells again, destroy the energy balance it maintains, activate the immune system, and finally kill tumour cells. In this paper, the regulatory effects of metabolites such as lactate, glutamine, arginine, tryptophan, fatty acids and adenosine were reviewed, and the related targeting strategies of nano-medicines were summarised, and the future therapeutic strategies of nano-drugs were discussed. The abnormality of tumour metabolites caused by tumour metabolic remodelling not only changes the energy and material supply of tumour, but also participates in the regulation of tumour-related signal pathways, which plays an important role in the survival, proliferation, invasion and metastasis of tumour cells. Regulating the availability of local metabolites is a new aspect that affects tumour progress. (The graphical abstract is by Figdraw).
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
Fu R, Zhou S, Liu C, Zhou J, Li Q. Administration of a combination of COX-2/TGF-β1 siRNAs induces hypertrophic scar fibroblast apoptosis through a TP53 mediated caspase pathway. Sci Rep 2024; 14:26427. [PMID: 39488600 PMCID: PMC11531465 DOI: 10.1038/s41598-024-77756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Hypertrophic scar (HTS) formation is a pathological fibrotic skin disease, with no satisfactory treatments available currently. Inducing apoptosis of HTS-derived fibroblasts (HSFs) are becoming promising approaches. In this research, we aim to improve the technology with co-delivery COX-2 and TGF-β1 siRNAs and further investigate the underlying mechanism. Firstly, the HSFs were transfected with 1 µg/ml COX-2 and/or TGF-β1 siRNAs, and proved that the apoptosis of HSFs was greater induced by COX-2/TGF-β1 siRNAs than either COX-2 or TGF-β1 siRNA alone by flow cytometry. To investigate the impact of co-silencing TGF-β1 and COX-2 mRNA expression in vivo, we established HTSs model in rat tails. Our results confirmed that co-silencing of TGF-β1 and COX-2 mRNA expression could significantly alleviate the HTS formation in vivo. Furthermore, we explored the potential molecular mechanism and revealed that the protein levels of TP53, Bcl-2 and Caspase-3 were downregulated while Bax and Cleaved Caspase-3 were upregulated in the COX-2/TGF-β1 siRNA groups compared with HKP group. Taken together, our results demonstrated that simultaneous silencing of COX-2 and TGF-β1 expression by siRNAs induced HSF apoptosis through a TP53 mediated caspase pathway. Therefore, COX-2/TGF-β1 siRNAs might serve as a novel and effective therapeutic alternative for HTSs treatments.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Sizheng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
3
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
4
|
Hamidnia F, Aslan ES, Najafi S, Baghbani E, Eslamkhah S, Baradaran B. Enhancing Chemotherapy Efficacy: Investigating the Synergistic Impact of Paclitaxel and cd73 Gene Suppression on Breast Cancer Cell Proliferation and Migration. Cureus 2024; 16:e65027. [PMID: 39165432 PMCID: PMC11334381 DOI: 10.7759/cureus.65027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/22/2024] Open
Abstract
Background Enhancing chemotherapy efficacy is crucial in breast cancer treatment. This study examines the synergistic effects of paclitaxel, a common chemotherapeutic drug, and Cluster of differentiation 73 (cd73) gene suppression via siRNA on MDA-MB-231 breast cancer cells. Methods MDA-MB-231 cells were transfected with CD73 siRNA and treated with paclitaxel. Cell viability, apoptosis, and migration were assessed by using MTT assays, Annexin V-FITC/PI staining, and wound healing assays, respectively, with flow cytometry analyzing cell cycle distribution. Results The combination of CD73 siRNA and paclitaxel significantly reduced cell viability, lowering paclitaxel's IC50 from 14.73 μg/mL to 8.471 μg/mL, indicating enhanced drug sensitivity. Apoptosis rates increased with the combination treatment, while cell migration was significantly inhibited. Flow cytometry revealed cell cycle arrest in the Sub-G1 and G2-M phases. Conclusion These findings suggest that cd73 gene suppression enhances paclitaxel's cytotoxic effects, promoting apoptosis and inhibiting cell migration in MDA-MB-231 breast cancer cell line. This combined strategy shows promise for improving breast cancer treatment outcomes by increasing the efficacy of existing chemotherapeutic regimens, warranting further research to explore its potential clinical applications and effectiveness in other breast cancer cell lines and models.
Collapse
Affiliation(s)
| | - Elif S Aslan
- Molecular Biology and Genetics, Biruni University, Istanbul, TUR
| | - Souzan Najafi
- Medical Sciences, Immunology Research Center, Tabriz University, Tabriz, IRN
| | - Elham Baghbani
- Medical Sciences, Immunology Research Center, Tabriz University, Tabriz, IRN
| | - Sajjad Eslamkhah
- Molecular Biology and Genetics, Biruni University, Istanbul, TUR
| | - Behzad Baradaran
- Medical Sciences, Immunology Research Center, Tabriz University, Tabriz, IRN
| |
Collapse
|
5
|
Antoniou V, Mourelatou EA, Galatou E, Avgoustakis K, Hatziantoniou S. Gene Therapy with Chitosan Nanoparticles: Modern Formulation Strategies for Enhancing Cancer Cell Transfection. Pharmaceutics 2024; 16:868. [PMID: 39065565 PMCID: PMC11280172 DOI: 10.3390/pharmaceutics16070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gene therapy involves the introduction of exogenous genetic material into host tissues to modify gene expression or cellular properties for therapeutic purposes. Initially developed to address genetic disorders, gene therapy has expanded to encompass a wide range of conditions, notably cancer. Effective delivery of nucleic acids into target cells relies on carriers, with non-viral systems gaining prominence due to their enhanced safety profile compared to viral vectors. Chitosan, a biopolymer, is frequently utilized to fabricate nanoparticles for various biomedical applications, particularly nucleic acid delivery, with recent emphasis on targeting cancer cells. Chitosan's positively charged amino groups enable the formation of stable nanocomplexes with nucleic acids and facilitate interaction with cell membranes, thereby promoting cellular uptake. Despite these advantages, chitosan-based nanoparticles face challenges such as poor solubility at physiological pH, non-specificity for cancer cells, and inefficient endosomal escape, limiting their transfection efficiency. To address these limitations, researchers have focused on enhancing the functionality of chitosan nanoparticles. Strategies include improving stability, enhancing targeting specificity, increasing cellular uptake efficiency, and promoting endosomal escape. This review critically evaluates recent formulation approaches within these categories, aiming to provide insights into advancing chitosan-based gene delivery systems for improved efficacy, particularly in cancer therapy.
Collapse
Affiliation(s)
- Varvara Antoniou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
| | - Elena A. Mourelatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Eleftheria Galatou
- Pharmacy Program, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (V.A.); (E.G.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26 504 Rion, Greece; (K.A.); (S.H.)
| |
Collapse
|
6
|
Jiang K, Wu J, Wang Q, Chen X, Zhang Y, Gu X, Tang K. Nanoparticles targeting the adenosine pathway for cancer immunotherapy. J Mater Chem B 2024; 12:5787-5811. [PMID: 38845588 DOI: 10.1039/d4tb00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cancer immunotherapy, as an emerging approach to cancer treatment, has tremendous potential for application. Compared to traditional methods such as surgery, chemotherapy, and radiation therapy, it has the ability to restore the patient's immune system, leading to long-term immune memory with less damage to normal tissues. However, immunotherapy has its limitations, including limited therapeutic efficacy, restricted patient populations, and inconsistent treatment responses. Finding effective immunotherapeutic approaches has become a key focus of its clinical application. The adenosine pathway is a recently discovered tumor immune regulatory signaling pathway. It can influence the metabolism and growth of tumor cells by acting through key enzymes in the adenosine pathway, thereby affecting the development of tumors. Therefore, inhibiting the adenosine pathway is an effective cancer immunotherapy. Common adenosine pathway inhibitors include small molecules and antibody proteins, and extensive preclinical trials have demonstrated their effectiveness in inhibiting tumor growth. The short half-life, low bioavailability, and single administration route of adenosine pathway inhibitors limit their clinical application. With the advent of nanotechnology, nano-delivery of adenosine pathway inhibitors has addressed these issues. Compared to traditional drugs, nano-drugs extend the drug's circulation time and improve its distribution within the body. They also offer targeting capabilities and have low toxic side effects, making them very promising for future applications. In this review, we discuss the mechanism of the adenosine pathway in tumor immune suppression, the clinical applications of adenosine pathway inhibitors, and nano-delivery based on adenosine pathway inhibitors. In the final part of this article, we also briefly discuss the technical issues and challenges currently present in nano-delivery of adenosine pathway inhibitors, with the hope of advancing the progress of adenosine inhibitor nano-drugs in clinical treatment.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
8
|
Barshidi A, Karpisheh V, Noukabadi FK, Kiani FK, Mohammadi M, Afsharimanesh N, Ebrahimi F, Kiaie SH, Navashenaq JG, Hojjat-Farsangi M, Zolbanin NM, Mahmoodpoor A, Hassannia H, Nami S, Jalali P, Jafari R, Jadidi-Niaragh F. Dual Blockade of PD-1 and LAG3 Immune Checkpoints Increases Dendritic Cell Vaccine Mediated T Cell Responses in Breast Cancer Model. Pharm Res 2022; 39:1851-1866. [PMID: 35715669 DOI: 10.1007/s11095-022-03297-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Increasing the efficiency of unsuccessful immunotherapy methods is one of the most important research fields. Therefore, the use of combination therapy is considered as one of the ways to increase the effectiveness of the dendritic cell (DC) vaccine. In this study, the inhibition of immune checkpoint receptors such as LAG3 and PD-1 on T cells was investigated to increase the efficiency of T cells in response to the DC vaccine. METHODS We used trimethyl chitosan-dextran sulfate-lactate (TMC-DS-L) nanoparticles (NPs) loaded with siRNA molecules to quench the PD-1 and LAG3 checkpoints' expression. RESULTS Appropriate physicochemical characteristics of the generated NPs led to efficient inhibition of LAG3 and PD-1 on T cells, which was associated with increased survival and activity of T cells, ex vivo. Also, treating mice with established breast tumors (4T1) using NPs loaded with siRNA molecules in combination with DC vaccine pulsed with tumor lysate significantly inhibited tumor growth and increased survival in mice. These ameliorative effects were associated with increased anti-tumor T cell responses and downregulation of immunosuppressive cells in the tumor microenvironment and spleen. CONCLUSION These findings strongly suggest that TMC-DS-L NPs loaded with siRNA could act as a novel tool in inhibiting the expression of immune checkpoints in the tumor microenvironment. Also, combination therapy based on inhibition of PD-1 and LAG3 in combination with DC vaccine is an effective method in treating cancer that needs to be further studied.
Collapse
Affiliation(s)
- Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mohammadi
- Department of Cell and Molecular Biology, School of Advanced Sciences, Islamic Azad University, Tehran Medical Branch, Tehran, , Iran
| | - Negin Afsharimanesh
- Department of Microbiology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center,, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, , Urmia University of Medical Sciences, Urmia, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sanam Nami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Functionalized drug-gene delivery materials to transport inhibitor of apoptosis protein antagonists for tumor malignancy management. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Kheshti AMS, Hajizadeh F, Barshidi A, Rashidi B, Ebrahimi F, Bahmanpour S, Karpisheh V, Noukabadi FK, Kiani FK, Hassannia H, Atyabi F, Kiaie SH, Kashanchi F, Navashenaq JG, Mohammadi H, Bagherifar R, Jafari R, Zolbanin NM, Jadidi-Niaragh F. Combination Cancer Immunotherapy with Dendritic Cell Vaccine and Nanoparticles Loaded with Interleukin-15 and Anti-beta-catenin siRNA Significantly Inhibits Cancer Growth and Induces Anti-Tumor Immune Response. Pharm Res 2022; 39:353-367. [PMID: 35166995 DOI: 10.1007/s11095-022-03169-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The invention and application of new immunotherapeutic methods can compensate for the inefficiency of conventional cancer treatment approaches, partly due to the inhibitory microenvironment of the tumor. In this study, we tried to inhibit the growth of cancer cells and induce anti-tumor immune responses by silencing the expression of the β-catenin in the tumor microenvironment and transmitting interleukin (IL)-15 cytokine to provide optimal conditions for the dendritic cell (DC) vaccine. METHODS For this purpose, we used folic acid (FA)-conjugated SPION-carboxymethyl dextran (CMD) chitosan (C) nanoparticles (NPs) to deliver anti-β-catenin siRNA and IL-15 to cancer cells. RESULTS The results showed that the codelivery of β-catenin siRNA and IL-15 significantly reduced the growth of cancer cells and increased the immune response. The treatment also considerably stimulated the performance of the DC vaccine in triggering anti-tumor immunity, which inhibited tumor development and increased survival in mice in two different cancer models. CONCLUSIONS These findings suggest that the use of new nanocarriers such as SPION-C-CMD-FA could be an effective way to use as a novel combination therapy consisting of β-catenin siRNA, IL-15, and DC vaccine to treat cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemistry
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Drug Carriers
- Drug Compounding
- Female
- Gene Expression Regulation, Neoplastic
- Interleukin-15/administration & dosage
- Interleukin-15/chemistry
- Lymphocytes, Tumor-Infiltrating/immunology
- Magnetic Iron Oxide Nanoparticles
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred BALB C
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNAi Therapeutics
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- Tumor Burden/drug effects
- Tumor Microenvironment
- beta Catenin/genetics
- Mice
Collapse
Affiliation(s)
| | - Farnaz Hajizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Simin Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | | | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rafieh Bagherifar
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naime Majidi Zolbanin
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Li X, Li J, Li C, Guo Q, Wu M, Su L, Dou Y, Wu X, Xiao Z, Zhang X. Aminopeptidase N-targeting nanomolecule-assisted delivery of VEGF siRNA to potentiate antitumour therapy by suppressing tumour revascularization and enhancing radiation response. J Mater Chem B 2021; 9:7530-7543. [PMID: 34551051 DOI: 10.1039/d1tb00990g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumour revascularization and the consequent radioresistance activated by the up-regulated angiogenic pathway after radiation exposure remain a major bottleneck for improving the tumouricidal effect of radiotherapy (RT) in hepatocellular carcinoma (HCC). Herein, we show that fabricated aminopeptidase N (ANP/CD13)-targeting Gd-hybridized gold nanomolecules (tGd-GNMs) can efficaciously suppress tumour revascularization and the consequent radioresistance, and then synergize in augmenting the RT response. Both in vitro and in vivo experiments demonstrate that the targeted delivery of vascular endothelial growth factor (VEGF) siRNA into the tumour site and the generation of an abundance of intratumourally cytotoxic reactive oxygen species (ROS) under X-ray radiation by the tGd-GNMssiRNA complex has the capability to down-regulate VEGF gene expression and strengthen the radiation response. Furthermore, the tGd-GNMssiRNA complex contributes to excellent active tumour targeting ability, remarkably enhancing tumour contrast in the fluorescence, computed tomography (CT) and magnetic resonance (MR) imaging modalities in real-time with a long imaging time window. Overall, the synthesized tGd-GNMssiRNA complex with excellent potentiation of the antitumour ability and real-time multimodal imaging ability represents a promising visualized theranostic nanoplatform for the treatment of HCC.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Jiang Li
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Chunyin Li
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin, Tianjin's Clinical Research Center for Cancer, 300060, P. R. China
| | - Qi Guo
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Menglin Wu
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Xinhong Wu
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Zhaoxun Xiao
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Xuening Zhang
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| |
Collapse
|