1
|
Nakade Y, Iwata Y, Harada K, Sato Y, Mita M, Hamase K, Konno R, Hayashi M, Kobayashi T, Yamamura Y, Toyama T, Tajima A, Wada T. Effect of D-amino acid metabolic enzyme deficiency on cancer development-diffuse large B-cell lymphoma onset and gene expression analyses in DASPO-knockout mice. Amino Acids 2024; 57:4. [PMID: 39718666 DOI: 10.1007/s00726-024-03426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 12/25/2024]
Abstract
The relationship between D-AA metabolic enzymes and cancer development remains unclear. We aimed to investigate this relationship using mice deficient in D-AA-related metabolic enzymes. We examined mice lacking these enzymes for approximately 900 days and the effects of altered D-AA metabolism on cancer development based on lifespan, pathological findings, and gene expression. The lifespan of female DASPO -knockout (DASPO-/-) mice was shorter than that of the other group mice; furthermore, these mice showed tumor-like masses in the liver, spleen, and small intestine. A pathological diagnosis of diffuse large B-cell lymphoma (DLBCL) was made. RNA sequencing of the liver samples showed specific alterations in the expression of 71 genes in DASPO-/- mice compared with that in wild-type B6 mice; RGS 1, MTSS1, and SMARCD 1 were identified as DLBCL-related genes. Patients with DLBCL exhibiting low DASPO expression demonstrated a shorter survival period than those showing high expression. However, the role of DASPO in DLBCL development is unclear. Therefore, future research should focus on B cells. DASPO may serve as novel biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yusuke Nakade
- Department of Nephrology and Rheumatology, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
- Department of Clinical Laboratory, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
- Department of Clinical Laboratory, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Yasuharu Sato
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, 2-5-1 Shikata-Chou, Kita-Ku, Okayama, 700-8558, Japan
| | - Masashi Mita
- KAGAMI Co., Ltd., 7-18 Saitobaiohiruzu Centre 308, Ibaragi-Shi, Osaka, 567-0085, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryuichi Konno
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, 324-8501, Japan
| | - Mayo Hayashi
- Department of Nephrology and Rheumatology, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
- Department of Clinical Laboratory, Kanazawa University Hospital, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Taku Kobayashi
- Department of Nephrology and Rheumatology, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Yuta Yamamura
- Department of Nephrology and Rheumatology, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Tadashi Toyama
- Department of Nephrology and Rheumatology, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Takashi Wada
- Department of Nephrology and Rheumatology, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan.
| |
Collapse
|
2
|
Vanella R, Küng C, Schoepfer AA, Doffini V, Ren J, Nash MA. Understanding activity-stability tradeoffs in biocatalysts by enzyme proximity sequencing. Nat Commun 2024; 15:1807. [PMID: 38418512 PMCID: PMC10902396 DOI: 10.1038/s41467-024-45630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024] Open
Abstract
Understanding the complex relationships between enzyme sequence, folding stability and catalytic activity is crucial for applications in industry and biomedicine. However, current enzyme assay technologies are limited by an inability to simultaneously resolve both stability and activity phenotypes and to couple these to gene sequences at large scale. Here we present the development of enzyme proximity sequencing, a deep mutational scanning method that leverages peroxidase-mediated radical labeling with single cell fidelity to dissect the effects of thousands of mutations on stability and catalytic activity of oxidoreductase enzymes in a single experiment. We use enzyme proximity sequencing to analyze how 6399 missense mutations influence folding stability and catalytic activity in a D-amino acid oxidase from Rhodotorula gracilis. The resulting datasets demonstrate activity-based constraints that limit folding stability during natural evolution, and identify hotspots distant from the active site as candidates for mutations that improve catalytic activity without sacrificing stability. Enzyme proximity sequencing can be extended to other enzyme classes and provides valuable insights into biophysical principles governing enzyme structure and function.
Collapse
Affiliation(s)
- Rosario Vanella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| | - Christoph Küng
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Alexandre A Schoepfer
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- National Center for Competence in Research (NCCR), Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Vanni Doffini
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Jin Ren
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058, Basel, Switzerland.
- Swiss Nanoscience Institute, 4056, Basel, Switzerland.
| |
Collapse
|
3
|
Moradbeygi F, Ghasemi Y, Farmani AR, Hemmati S. Glucarpidase (carboxypeptidase G2): Biotechnological production, clinical application as a methotrexate antidote, and placement in targeted cancer therapy. Biomed Pharmacother 2023; 166:115292. [PMID: 37579696 DOI: 10.1016/j.biopha.2023.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Patients receiving high-dose methotrexate (HDMTX) for malignancies are exposed to diverse complications, including nephrotoxicity, hepatotoxicity, mucositis, myelotoxicity, neurological symptoms, and death. Glucarpidase is a recombinant carboxypeptidase G2 (CPG2) that converts MTX into nontoxic metabolites. In this study, the role of vector type, gene optimization, orientation, and host on the expression of CPG2 is investigated. The effectiveness of various therapeutic regimens containing glucarpidase is classified and perspectives on the dose adjustment based on precision medicine are provided. Conjugation with cell-penetrating peptides, human serum albumin, and polymers such as PEG and dextran for delivery, higher stability, and production of the biobetter variants of CPG2 is highlighted. Conjugation of CPG2 to F(ab՜)2 or scFv antibody fragments against tumor-specific antigens and the corresponding prodrugs for tumor-targeted drug delivery using the antibody-directed enzyme prodrug therapy (ADEPT) is communicated. Trials to reduce the off-target effects and the possibility of repeated ADEPT cycles by adding pro-domains sensitive to tumor-overexpressed proteases, antiCPG2 antibodies, CPG2 mutants with immune-system-unrecognizable epitopes, and protective polymers are reported. Intracellular cpg2 gene expression by gene-directed enzyme prodrug therapy (GDEPT) and the concerns regarding the safety and transfection efficacy of the GDEPT vectors are described. A novel bifunctional platform using engineered CAR-T cell micropharmacies, known as Synthetic Enzyme-Armed KillER (SEAKER) cells, expressing CPG2 to activate prodrugs at the tumor niche is introduced. Taken together, integrated data in this review and recruiting combinatorial strategies in novel drug delivery systems define the future directions of ADEPT, GDEPT, and SEAKER cell therapy and the placement of CPG2 therein.
Collapse
Affiliation(s)
- Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Farmani
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Küng C, Vanella R, Nash MA. Directed evolution of Rhodotorula gracilisd-amino acid oxidase using single-cell hydrogel encapsulation and ultrahigh-throughput screening. REACT CHEM ENG 2023; 8:1960-1968. [PMID: 37496730 PMCID: PMC10366730 DOI: 10.1039/d3re00002h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/15/2023] [Indexed: 07/28/2023]
Abstract
Engineering catalytic and biophysical properties of enzymes is an essential step en route to advanced biomedical and industrial applications. Here, we developed a high-throughput screening and directed evolution strategy relying on single-cell hydrogel encapsulation to enhance the performance of d-Amino acid oxidase from Rhodotorula gracilis (RgDAAOx), a candidate enzyme for cancer therapy. We used a cascade reaction between RgDAAOx variants surface displayed on yeast and horseradish peroxidase (HRP) in the bulk media to trigger enzyme-mediated crosslinking of phenol-bearing fluorescent alginate macromonomers, resulting in hydrogel formation around single yeast cells. The fluorescent hydrogel capsules served as an artificial phenotype and basis for pooled library screening by fluorescence activated cell sorting (FACS). We screened a RgDAAOx variant library containing ∼106 clones while lowering the d-Ala substrate concentration over three sorting rounds in order to isolate variants with low Km. After three rounds of FACS sorting and regrowth, we isolated and fully characterized four variants displayed on the yeast surface. We identified variants with a more than 5-fold lower Km than the parent sequence, with an apparent increase in substrate binding affinity. The mutations we identified were scattered across the RgDAAOx structure, demonstrating the difficulty in rationally predicting allosteric sites and highlighting the advantages of scalable library screening technologies for evolving catalytic enzymes.
Collapse
Affiliation(s)
- Christoph Küng
- Institute of Physical Chemistry, Department of Chemistry, University of Basel 4058 Basel Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich 4058 Basel Switzerland
| | - Rosario Vanella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel 4058 Basel Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich 4058 Basel Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel 4058 Basel Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich 4058 Basel Switzerland
| |
Collapse
|
5
|
Rosini E, Boreggio M, Verga M, Caldinelli L, Pollegioni L, Fasoli E. The D-amino acid oxidase-carbon nanotubes: evaluation of cytotoxicity and biocompatibility of a potential anticancer nanosystem. 3 Biotech 2023; 13:243. [PMID: 37346390 PMCID: PMC10279611 DOI: 10.1007/s13205-023-03568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/19/2023] [Indexed: 06/23/2023] Open
Abstract
The 'enzyme prodrug therapy' represents a promising strategy to overcome limitations of current cancer treatments by the systemic administration of prodrugs, converted by a foreign enzyme into an active anticancer compound directly in tumor sites. One example is D-amino acid oxidase (DAAO), a dimeric flavoenzyme able to catalyze the oxidative deamination of D-amino acids with production of hydrogen peroxide, a reactive oxygen species (ROS), able to favor cancer cells death. A DAAO variant containing five aminoacidic substitutions (mDAAO) was demonstrated to possess a better therapeutic efficacy under low O2 concentration than wild-type DAAO (wtDAAO). Recently, aiming to design promising nanocarriers for DAAO, multi-walled carbon nanotubes (MWCNTs) were functionalized with polyethylene glycol (PEG) to reduce their tendency to aggregation and to improve their biocompatibility. Here, wtDAAO and mDAAO were adsorbed on PEGylated MWCNTs and their activity and cytotoxicity were tested. While PEG-MWCNTs-DAAOs have shown a higher activity than pristine MWCNTs-DAAO (independently on the DAAO variant used), PEG-MWCNTs-mDAAO showed a higher cytotoxicity than PEG-MWCNTs-wtDAAO at low O2 concentration. In order to evaluate the nanocarriers' biocompatibility, PEG-MWCNTs-DAAOs were incubated in human serum and the composition of protein corona was investigated via nLC-MS/MS, aiming to characterize both soft and hard coronas. The mDAAO variant has influenced the bio-corona composition in both number of proteins and presence of opsonins and dysopsonins: notably, the soft corona of PEG-MWCNTs-mDAAO contained less proteins and was more enriched in proteins able to inhibit the immune response than PEG-MWCNTs-wtDAAO. Considering the obtained results, the PEGylated MWCNTs conjugated with the mDAAO variant seems a promising candidate for a selective antitumor oxidative therapy: under anoxic-like conditions, this novel drug delivery system showed a remarkable cytotoxic effect controlled by the substrate addition, against different tumor cell lines, and a bio-corona composition devoted to prolong its blood circulation time, thus improving the drug's biodistribution. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03568-1.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Marta Boreggio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Matteo Verga
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Laura Caldinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
6
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
7
|
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023; 11:1182-1214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.
Collapse
Affiliation(s)
- Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
D-Amino Acids and Cancer: Friends or Foes? Int J Mol Sci 2023; 24:ijms24043274. [PMID: 36834677 PMCID: PMC9962368 DOI: 10.3390/ijms24043274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
α-amino acids exist in two configurations, named D-(dextro) and L-(levo) enantiomers. L-amino acids are used in protein synthesis and play a central role in cell metabolism. The effects of the L-amino acid composition of foods and the dietary modifications of this composition on the efficacy of cancer therapies have been widely investigated in relation to the growth and reproduction of cancerous cells. However, less is known about the involvement of D-amino acids. In recent decades, D-amino acids have been identified as natural biomolecules that play interesting and specific roles as common components of the human diet. Here, we focus on recent investigations showing altered D-amino acid levels in specific cancer types and on the various roles proposed for these biomolecules related to cancer cell proliferation, cell protection during therapy, and as putative, innovative biomarkers. Notwithstanding recent progress, the relationship between the presence of D-amino acids, their nutritional value, and cancer cell proliferation and survival represents an underrated scientific issue. Few studies on human samples have been reported to date, suggesting a need for routine analysis of D-amino acid content and an evaluation of the enzymes involved in regulating their levels in clinical samples in the near future.
Collapse
|
9
|
Peng Z, Lv X, Huang S. Recent Progress on the Role of Fibronectin in Tumor Stromal Immunity and Immunotherapy. Curr Top Med Chem 2022; 22:2494-2505. [PMID: 35708087 DOI: 10.2174/1568026622666220615152647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/20/2023]
Abstract
As a major component of the stromal microenvironment of various solid tumors, the extracellular matrix (ECM) has attracted increasing attention in cancer-related studies. ECM in the tumor stroma not only provides an external barrier and framework for tumor cell adhesion and movement, but also acts as an active regulator that modulates the tumor microenvironment, including stromal immunity. Fibronectin (Fn), as a core component of the ECM, plays a key role in the assembly and remodeling of the ECM. Hence, understanding the role of Fn in the modulation of tumor stromal immunity is of great importance for cancer immunotherapy. Hence, in-depth studies on the underlying mechanisms of Fn in tumors are urgently needed to clarify the current understanding and issues and to identify new and specific targets for effective diagnosis and treatment purposes. In this review, we summarize the structure and role of Fn, its potent derivatives in tumor stromal immunity, and their biological effects and mechanisms in tumor development. In addition, we discuss the novel applications of Fn in tumor treatment. Therefore, this review can provide prospective insight into Fn immunotherapeutic applications in tumor treatment.
Collapse
Affiliation(s)
- Zheng Peng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaolan Lv
- Department of Laboratory Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Shigao Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Air Force Medical University, Xi an, Shaan Xi, China
| |
Collapse
|
10
|
Martín-Otal C, Lasarte-Cia A, Serrano D, Casares N, Conde E, Navarro F, Sánchez-Moreno I, Gorraiz M, Sarrión P, Calvo A, De Andrea CE, Echeveste J, Vilas A, Rodriguez-Madoz JR, San Miguel J, Prosper F, Hervas-Stubbs S, Lasarte JJ, Lozano T. Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells. J Immunother Cancer 2022; 10:jitc-2021-004479. [PMID: 35918123 PMCID: PMC9351345 DOI: 10.1136/jitc-2021-004479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. METHODS EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. RESULTS EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3ζ endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. CONCLUSIONS These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Diego Serrano
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Noelia Casares
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Enrique Conde
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Flor Navarro
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Marta Gorraiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Patricia Sarrión
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Alfonso Calvo
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Carlos E De Andrea
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - José Echeveste
- Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Amaia Vilas
- Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Jesús San Miguel
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Juan Jose Lasarte
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Teresa Lozano
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
11
|
Boreggio M, Rosini E, Gambarotti C, Pollegioni L, Fasoli E. Unveiling the Bio-corona Fingerprinting of Potential Anticancer Carbon Nanotubes Coupled with D-Amino Acid Oxidase. Mol Biotechnol 2022; 64:1164-1176. [PMID: 35467257 PMCID: PMC9411096 DOI: 10.1007/s12033-022-00488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2022] [Indexed: 11/27/2022]
Abstract
The oxidation therapy, based on the controlled production of Reactive Oxygen Species directly into the tumor site, was introduced as alternative antitumor approach. For this purpose, d-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis, an enzyme able to efficiently catalyze the production of hydrogen peroxide from d-amino acids, was adsorbed onto multi-walled carbon nanotubes (MWCNTs), previously functionalized with polylactic-co-glycolic acid (PLGA) or polyethylene glycol (PEG) at different degrees to reduce their toxicity, to be targeted directly into the tumor. In vitro activity and cytotoxicity assays demonstrated that DAAO-functionalized nanotubes (f-MWCNTs) produced H2O2 and induced toxic effects to selected tumor cell lines. After incubation in human plasma, the protein corona was investigated by SDS-PAGE and mass spectrometry analysis. The enzyme nanocarriers generally seemed to favor their biocompatibility, promoting the interaction with dysopsonins. Despite this, PLGA or high degree of PEGylation promoted the adsorption of immunoglobulins with a possible activation of immune response and this effect was probably due to PLGA hydrophobicity and dimensions and to the production of specific antibodies against PEG. In conclusion, the PEGylated MWCNTs at low degree seemed the most biocompatible nanocarrier for adsorbed DAAO, preserving its anticancer activity and forming a bio-corona able to reduce both defensive responses and blood clearance.
Collapse
Affiliation(s)
- Marta Boreggio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varèse, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varèse, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
12
|
Rosini E, Pollegioni L. Reactive oxygen species as a double-edged sword: The role of oxidative enzymes in antitumor therapy. Biofactors 2022; 48:384-399. [PMID: 34608689 DOI: 10.1002/biof.1789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
A number of approaches have been developed over the years to manage cancer, such as chemotherapy using low-molecular-mass molecules and radiotherapy. Here, enzymes can also find useful applications. Among them, oxidases have attracted attention because of their ability to produce reactive oxygen species (ROS, especially hydrogen peroxide) in tumors and potentially modulate the production of this cytotoxic compound when enzymes active on substrates present in low amounts are used, such as the d-amino acid oxidase and d-amino acid couple system. These treatments have been also developed for additional cancer treatment approaches, such as phototherapy, nutrient starvation, and metal-induced hydroxyl radical production. In addition, to improve tumor specificity and decrease undesired side effects, oxidases have been targeted by means of nanotechnologies and protein engineering (i.e., by designing chimeric proteins able to accumulate in the tumor). The most recent advances obtained by using six different oxidases (i.e., the FAD-containing enzymes glucose oxidase, d- and l-amino acid oxidases, cholesterol oxidase and xanthine oxidase, and the copper-containing amine oxidase) have been reported. Anticancer therapy based on oxidase-based ROS production has now reached maturity and can be applied in the clinic.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
13
|
Chemogenetic approaches to dissect the role of H2O2 in redox-dependent pathways using genetically encoded biosensors. Biochem Soc Trans 2022; 50:335-345. [PMID: 35015078 DOI: 10.1042/bst20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Chemogenetic tools are recombinant enzymes that can be targeted to specific organelles and tissues. The provision or removal of the enzyme substrate permits control of its biochemical activities. Yeast-derived enzyme D-amino acid oxidase (DAAO) represents the first of its kind for a substrate-based chemogenetic approach to modulate H2O2 concentrations within cells. Combining these powerful enzymes with multiparametric imaging methods exploiting genetically encoded biosensors has opened new lines of investigations in life sciences. In recent years, the chemogenetic DAAO approach has proven beneficial to establish a new role for (patho)physiological oxidative stress on redox-dependent signaling and metabolic pathways in cultured cells and animal model systems. This mini-review covers established or emerging methods and assesses newer approaches exploiting chemogenetic tools combined with genetically encoded biosensors.
Collapse
|