1
|
Aebisher D, Czech S, Dynarowicz K, Misiołek M, Komosińska-Vassev K, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy: Past, Current, and Future. Int J Mol Sci 2024; 25:11325. [PMID: 39457108 PMCID: PMC11508366 DOI: 10.3390/ijms252011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The Greek roots of the word "photodynamic" are as follows: "phos" (φω~ς) means "light" and "dynamis" (δύναμις) means "force" or "power". Photodynamic therapy (PDT) is an innovative treatment method based on the ability of photosensitizers to produce reactive oxygen species after the exposure to light that corresponds to an absorbance wavelength of the photosensitizer, either in the visible or near-infrared range. This process results in damage to pathological cancer cells, while minimizing the impact on healthy tissues. PDT is a promising direction in the treatment of many diseases, with particular emphasis on the fight against cancer and other diseases associated with excessive cell growth. The power of light contributed to the creation of phototherapy, whose history dates back to ancient times. It was then noticed that some substances exposed to the sun have a negative effect on the body, while others have a therapeutic effect. This work provides a detailed review of photodynamic therapy, from its origins to the present day. It is surprising how a seemingly simple beam of light can have such a powerful healing effect, which is used not only in dermatology, but also in oncology, surgery, microbiology, virology, and even dentistry. However, despite promising results, photodynamic therapy still faces many challenges. Moreover, photodynamic therapy requires further research and improvement.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Sara Czech
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland;
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| |
Collapse
|
2
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
3
|
Gu R, Fei S, Liu Z, Liu X, Fang X, Wu H, Zhang X, Xu G, Xu F. Effects of photodynamic therapy in patients with infected skin ulcers: A meta-analysis. Int Wound J 2024; 21:e14747. [PMID: 38445778 PMCID: PMC10915826 DOI: 10.1111/iwj.14747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
The purpose of the meta-analysis was to evaluate and compare the photodynamic therapy's effectiveness in treating infected skin wounds. The results of this meta-analysis were analysed, and the odds ratio (OR) and mean difference (MD) with 95% confidence intervals (CIs) were calculated using dichotomous or contentious random- or fixed-effect models. For the current meta-analysis, 6 examinations spanning from 2013 to 2021 were included, encompassing 154 patients with infected skin wounds were the used studies' starting point. Photodynamic therapy had a significantly lower wound ulcer size (MD, -4.42; 95% CI, -7.56--1.28, p = 0.006), better tissue repair (MD, -8.62; 95% CI, -16.76--0.48, p = 0.04) and lower microbial cell viability (OR, 0.13; 95% CI, 0.04-0.42, p < 0.001) compared with red light exposure in subjects with infected skin wounds. The examined data revealed that photodynamic therapy had a significantly lower wound ulcer size, better tissue repair and lower microbial cell viability compared with red light exposure in subjects with infected skin wounds. However, given that all examinations had a small sample size, consideration should be given to their values.
Collapse
Affiliation(s)
- Rui Gu
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese MedicineBeijingChina
| | - Sha'ni Fei
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese MedicineBeijingChina
| | - Zhaoyu Liu
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese MedicineBeijingChina
| | - Xiaoqi Liu
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese MedicineBeijingChina
| | - Xiaoxiao Fang
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese MedicineBeijingChina
| | - Hengjin Wu
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese MedicineBeijingChina
| | - Xia Zhang
- Department of NeurologyPeking University Aerospace School of Clinical MedicineBeijingChina
| | - Guomei Xu
- Department of DermatologyBeijing University of Chinese Medicine Third Affiliated HospitalBeijingChina
| | - Fengquan Xu
- Department of PsychosomaticsGuang'anmen Hospital, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
4
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
5
|
Fornel DG, Ferrisse TM, de Oliveira AB, Fontana CR. Photodynamic Therapy Can Modulate the Nasopharyngeal Carcinoma Microenvironment Infected with the Epstein-Barr Virus: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:biomedicines11051344. [PMID: 37239013 DOI: 10.3390/biomedicines11051344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
Nasopharyngeal carcinoma is a malignancy from epithelial cells predominantly associated with the Epstein-Barr virus (EBV) infection, and it is responsible for 140,000 deaths annually. There is a current need to develop new strategies to increase the efficacy of antineoplastic treatment and reduce side effects. Thus, the present study aimed to perform a systematic review and meta-analysis of the ability of photodynamic therapy (PDT) to modulate the tumor microenvironment and PDT efficacy in nasopharyngeal carcinoma treatment. The reviewers conducted all steps in the systematic review. PubMed, Science Direct, Scopus, Scielo, Lilacs, EMBASE, and the Cochrane library databases were searched. The OHAT was used to assess the risk of bias. Meta-analysis was performed with a random-effects model (α = 0.05). Nasopharyngeal carcinoma cells treated with PDT showed that IL-8, IL-1α, IL-1β, LC3BI, LC3BII, MMP2, and MMP9 levels were significantly higher than in groups that did not receive PDT. NF-ĸB, miR BART 1-5p, BART 16, and BART 17-5p levels were significantly lower in the PDT group than in the control group. Apoptosis levels and the viability of nasopharyngeal carcinoma cells (>70%) infected with EBV were effective after PDT. This treatment also increased LMP1 levels (0.28-0.50/p < 0.05) compared to the control group. PDT showed promising results for efficacy in killing nasopharyngeal carcinoma cells infected with EBV and modulating the tumor microenvironment. Further preclinical studies should be performed to validate these results.
Collapse
Affiliation(s)
- Diógenes Germano Fornel
- Department of Clinical Analysis, School of Pharmaceutical Sciences, UNESP-São Paulo State University, Araraquara 14801-902, SP, Brazil
| | - Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, School of Dentistry, UNESP-São Paulo State University, Araraquara 14801-903, SP, Brazil
| | - Analú Barros de Oliveira
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, UNESP-São Paulo State University, Araraquara 14801-903, SP, Brazil
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, UNESP-São Paulo State University, Araraquara 14801-902, SP, Brazil
| |
Collapse
|
6
|
Rahman KMM, Giram P, Foster BA, You Y. Photodynamic Therapy for Bladder Cancers, A Focused Review †. Photochem Photobiol 2023; 99:420-436. [PMID: 36138552 PMCID: PMC10421568 DOI: 10.1111/php.13726] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/18/2022] [Indexed: 02/02/2023]
Abstract
Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.
Collapse
Affiliation(s)
- Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Barbara A. Foster
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
7
|
Farhana A. Enhancing Skin Cancer Immunotheranostics and Precision Medicine through Functionalized Nanomodulators and Nanosensors: Recent Development and Prospects. Int J Mol Sci 2023; 24:3493. [PMID: 36834917 PMCID: PMC9959821 DOI: 10.3390/ijms24043493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Skin cancers, especially melanomas, present a formidable diagnostic and therapeutic challenge to the scientific community. Currently, the incidence of melanomas shows a high increase worldwide. Traditional therapeutics are limited to stalling or reversing malignant proliferation, increased metastasis, or rapid recurrence. Nonetheless, the advent of immunotherapy has led to a paradigm shift in treating skin cancers. Many state-of-art immunotherapeutic techniques, namely, active vaccination, chimeric antigen receptors, adoptive T-cell transfer, and immune checkpoint blockers, have achieved a considerable increase in survival rates. Despite its promising outcomes, current immunotherapy is still limited in its efficacy. Newer modalities are now being explored, and significant progress is made by integrating cancer immunotherapy with modular nanotechnology platforms to enhance its therapeutic efficacy and diagnostics. Research on targeting skin cancers with nanomaterial-based techniques has been much more recent than other cancers. Current investigations using nanomaterial-mediated targeting of nonmelanoma and melanoma cancers are directed at augmenting drug delivery and immunomodulation of skin cancers to induce a robust anticancer response and minimize toxic effects. Many novel nanomaterial formulations are being discovered, and clinical trials are underway to explore their efficacy in targeting skin cancers through functionalization or drug encapsulation. The focus of this review rivets on theranostic nanomaterials that can modulate immune mechanisms toward protective, therapeutic, or diagnostic approaches for skin cancers. The recent breakthroughs in nanomaterial-based immunotherapeutic modulation of skin cancer types and diagnostic potentials in personalized immunotherapies are discussed.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Aljouf 72388, Saudi Arabia
| |
Collapse
|
8
|
Ferrisse TM, Dias LM, de Oliveira AB, Jordão CC, Mima EGDO, Pavarina AC. Efficacy of Antimicrobial Photodynamic Therapy Mediated by Photosensitizers Conjugated with Inorganic Nanoparticles: Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:2050. [PMID: 36297486 PMCID: PMC9612113 DOI: 10.3390/pharmaceutics14102050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is a method that does not seem to promote antimicrobial resistance. Photosensitizers (PS) conjugated with inorganic nanoparticles for the drug-delivery system have the purpose of enhancing the efficacy of aPDT. The present study was to perform a systematic review and meta-analysis of the efficacy of aPDT mediated by PS conjugated with inorganic nanoparticles. The PubMed, Scopus, Web of Science, Science Direct, Cochrane Library, SciELO, and Lilacs databases were searched. OHAT Rob toll was used to assess the risk of bias. A random effect model with an odds ratio (OR) and effect measure was used. Fourteen articles were able to be included in the present review. The most frequent microorganisms evaluated were Staphylococcus aureus and Escherichia coli, and metallic and silica nanoparticles were the most common drug-delivery systems associated with PS. Articles showed biases related to blinding. Significant results were found in aPDT mediated by PS conjugated with inorganic nanoparticles for overall reduction of microorganism cultured in suspension (OR = 0.19 [0.07; 0.67]/p-value = 0.0019), E. coli (OR = 0.08 [0.01; 0.52]/p-value = 0.0081), and for Gram-negative bacteria (OR = 0.12 [0.02; 0.56/p-value = 0.0071). This association approach significantly improved the efficacy in the reduction of microbial cells. However, additional blinding studies evaluating the efficacy of this therapy over microorganisms cultured in biofilm are required.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Analú Barros de Oliveira
- Department of Morphology, Pediatric Dentistry and Orthodontic, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| |
Collapse
|