1
|
Xie Y, Huang J, Yang M, Zhang Y, Zhang X, Xu W, Cao J, Zhu L. Nucleic acid-mediated SERS Biosensors: Signal enhancement strategies and applications. Biosens Bioelectron 2025; 282:117519. [PMID: 40300343 DOI: 10.1016/j.bios.2025.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Surface Enhanced Raman Spectroscopy (SERS) is a powerful spectroscopic analysis technique applied in various fields due to its high selectivity, ultra-high sensitivity, and non-destructiveness. As natural biological macromolecules, nucleic acids perform a significant role in SERS biosensing. In this review, we first summarize how nucleic acids mediate the signal enhancement of SERS biosensors from three aspects: substrate self-assembly, analyte biorecognition, and molecular amplification. Among them, SERS substrates can be self-assembled by both DNA modification and coordination or electrostatic interactions. In the field of biorecognition, analyte biorecognition based on three nucleic acid recognition elements can enhance SERS signals by regulating the distance of analytes or Raman reporter molecules to the SERS substrate. In addition, nucleic acid-based enzyme and enzyme-free amplification can enhance SERS signals by enlarging the quantity of analytes or its nucleic acid intermediates. Subsequently, multidimensional applications of nucleic acid-mediated SERS signal enhancement in biomedicine, food safety, and environmental monitoring are listed. Finally, the current challenges and future exploration of nucleic acid-mediated SERS signal enhancement are discussed.
Collapse
Affiliation(s)
- Yushi Xie
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiaqiang Huang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Min Yang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Beijing Laboratory for Food Quality and Safety, Key Laboratory of Safety Assessment of Genetically, Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing, 100073, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China.
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Emamiamin A, Shariati Pour SR, Serra T, Calabria D, Varone M, Di Nardo F, Guardigli M, Anfossi L, Baggiani C, Zangheri M, Mirasoli M. New Frontiers for the Early Diagnosis of Cancer: Screening miRNAs Through the Lateral Flow Assay Method. BIOSENSORS 2025; 15:238. [PMID: 40277551 PMCID: PMC12024991 DOI: 10.3390/bios15040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
MicroRNAs (miRNAs), which circulate in the serum and plasma, play a role in several biological processes, and their levels in body fluids are associated with the pathogenesis of various diseases, including different types of cancer. For this reason, miRNAs are considered promising candidates as biomarkers for diagnostic purposes, enabling the early detection of pathological onset and monitoring drug responses during therapy. However, current methods for miRNA quantification, such as northern blotting, isothermal amplification, RT-PCR, microarrays, and next-generation sequencing, are limited by their reliance on centralized laboratories, high costs, and the need for specialized personnel. Consequently, the development of sensitive, simple, and one-step analytical techniques for miRNA detection is highly desirable, particularly given the importance of early diagnosis and prompt treatment in cases of cancer. Lateral flow assays (LFAs) are among the most attractive point-of-care (POC) devices for healthcare applications. These systems allow for the rapid and straightforward detection of analytes using low-cost setups that are accessible to a wide audience. This review focuses on LFA-based methods for detecting and quantifying miRNAs associated with the diagnosis of various cancers, with particular emphasis on sensitivity enhancements achieved through the application of different labels and detection systems. Early, non-invasive detection of these diseases through the quantification of tailored biomarkers can significantly reduce mortality, improve survival rates, and lower treatment costs.
Collapse
Affiliation(s)
- Afsaneh Emamiamin
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
| | - Thea Serra
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Marta Varone
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum—University of Bologna, Via St. Alberto 163, I-48123 Ravenna, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum—University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum—University of Bologna, Via St. Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
3
|
Liu W, Wang H, Zhong W, Zhang Y, Liu Y, Gao X, Yan M, Zhu C. The development and application of SERS-based lateral flow immunochromatography in the field of food safety. Mikrochim Acta 2025; 192:246. [PMID: 40119080 DOI: 10.1007/s00604-025-07047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/13/2025] [Indexed: 03/24/2025]
Abstract
Surface-Enhanced Raman Scattering-Lateral Flow Immunoassay (SERS-LFIA) inherits the advantages of simplicity, rapidness, and stability from Lateral Flow Immunoassay (LFIA), while integrating the sensitivity and accuracy of SERS, thereby attracting extensive attention in the field of food safety monitoring. This paper delves into the design strategies and principles underlying SERS-LFIA, introducing the detection formats based on SERS and contrasting the differences between traditional Raman molecules and those located in the Raman-silent region. It analyzes two immunoassay methods, namely sandwich and competitive, along with their respective applications. Importantly, by reviewing the applications of SERS-LFIA in food safety monitoring over the past 5 years, this paper summarizes the challenges faced by SERS-LFIA technology in practical applications and development. Furthermore, it provides a forward-looking perspective on the future development of SERS-LFIA. As a pivotal analytical method in the field of food safety monitoring, SERS-LFIA is demonstrating immense potential. It is hoped that this paper will offer valuable insights for the future development and application of SERS-LFIA.
Collapse
Affiliation(s)
- Wenxi Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Hao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Wenhui Zhong
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Yichun Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Yingyue Liu
- College of Life Science, Yantai University, Yantai, 264005, PR China
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| |
Collapse
|
4
|
Deng Y, Gao Z, Lin Z, Yang Z, Lin M, Xu Z, Lei H, Li X. MXene Bimetallic Coating Synergistic Enhanced Colorimetric-Raman Dual Signal-Based Immunochromatographic Assay for Advancing Detection Performance. Anal Chem 2024; 96:19527-19536. [PMID: 39589217 DOI: 10.1021/acs.analchem.4c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Herein, a three-dimensional thin film-like multifunctional MXene bimetallic coating material (Ti3C2@Au-Ag) with strong color intensity, high surface-enhanced Raman scattering (SERS) activity, and strong antibody affinity (1.00 × 108 M-1) was prepared. It was the first time that Ti3C2@Au-Ag-based colorimetric-SERS dual-signal immunochromatographic assay (ICA) was developed for the detection of dexamethasone, achieving the limits of detection of 0.0089, 0.14, and 0.084 μg/kg for milk, beef, and pork in colorimetric mode and 0.0015, 0.060, and 0.075 μg/kg in SERS mode. It was up to 200-fold more sensitive than the reported ICAs. The recoveries were 82.0%-112.6%, and the coefficients of variation were 1.4%-13.7%. The Ti3C2@Au-Ag-ICA was verified by LC-MS/MS in the application on 30 real samples with a correlation coefficient greater than 0.98. This study can provide efficient theoretical and practical value for the development of a colorimetric-SERS dual-signal immunoassay platform.
Collapse
Affiliation(s)
- Youwen Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhiheng Gao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhongqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zehao Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mengfang Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Liu S, Liao Y, Shu R, Sun J, Zhang D, Zhang W, Wang J. Evaluation of the Multidimensional Enhanced Lateral Flow Immunoassay in Point-of-Care Nanosensors. ACS NANO 2024; 18:27167-27205. [PMID: 39311085 DOI: 10.1021/acsnano.4c06564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Point-of-care (POC) nanosensors with high screening efficiency show promise for user-friendly manipulation in the ever-increasing on-site analysis demand for illness diagnosis, environmental monitoring, and food safety. Currently, inspired by the merits of integrating advanced nanomaterials, molecular biology, machine learning, and artificial intelligence, lateral flow immunoassay (LFIA)-based POC nanosensors have been devoted to satisfying the commercial demands in terms of sensitivity, specificity, and practicality. Herein, we examine the use of multidimensional enhanced LFIA in various fields over the past two decades, focusing on introducing advanced nanomaterials to improve the acquisition capability of small order of magnitude targets through engineering transformations and emphasizing interdomain fusion to collaboratively address the inherent challenges in current commercial applications, such as multiplexing, development of detectors for quantitative analysis, more practical on-site monitoring, and sensitivity enhancement. Specifically, this comprehensive review encompasses the latest advances in comprehending LFIA with an alternative signal transduction pattern, aiming to achieve rapid, ultrasensitive, and "sample-to-answer" available options with progressive applications for POC nanosensors. In summary, through the cross-collaboration development of disciplines, LFIA has the potential to break the barriers toward commercialization and achieve laboratory-level POC nanosensors, thus leading to the emergence of the next generation of LFIA.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Rubio-Monterde A, Rivas L, Gallegos M, Quesada-González D, Merkoçi A. Lateral flow immunoassay for simultaneous detection of C. difficile, MRSA, and K. pneumoniae. Mikrochim Acta 2024; 191:638. [PMID: 39352552 PMCID: PMC11445331 DOI: 10.1007/s00604-024-06701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Mainly performed within a rapid diagnostic tests company, a lateral flow (LF) system using gold nanoparticles (AuNPs) as transducers is presented able to detect three bacteria of interest, of relevance for antimicrobial resistance (AMR): Clostridioides difficile, methicillin-resistant Staphylococcus aureus (MRSA), and Klebsiella pneumoniae, with a limit of detection of 25 ng/mL of glutamate dehydrogenase (GDH) for C. difficile, 36 ng/mL of penicillin-binding protein 2a (PBP2a) for MRSA, and 4 × 106 CFU/mL for K. pneumoniae. The system showed good results with bacteria culture samples, is user-friendly, and suitable for rapid testing, as the results are obtained within 15 min.
Collapse
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain
- Nanobioelectronics and Biosensors Group, CSIC and BIST, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Lourdes Rivas
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain
| | - Marc Gallegos
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain
| | - Daniel Quesada-González
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain.
- Nanobioelectronics and Biosensors Group, CSIC and BIST, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Arben Merkoçi
- Paperdrop Diagnostics S.L, MRB, Campus UAB, 08193, Bellaterra, Spain.
- Nanobioelectronics and Biosensors Group, CSIC and BIST, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
7
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
8
|
Xiao L, Luo L, Liu J, Liu L, Han H, Xiao R, Guo L, Xie J, Tang L. A Glycoprotein-Based Surface-Enhanced Raman Spectroscopy-Lateral Flow Assay Method for Abrin and Ricin Detection. Toxins (Basel) 2024; 16:312. [PMID: 39057952 PMCID: PMC11280971 DOI: 10.3390/toxins16070312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins.
Collapse
Affiliation(s)
- Lan Xiao
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Li Luo
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
- Guangdong Lifotronic Biomedical Technology Co., Ltd., Dongguan 523808, China
| | - Jia Liu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
- College of Pharmacy, Hebei Science and Technology University, Shijiazhuang 050018, China
| | - Luyao Liu
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Han Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Rui Xiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Li Tang
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
| |
Collapse
|
9
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
10
|
Cho HS, Noh MS, Kim YH, Namgung J, Yoo K, Shin MS, Yang CH, Kim YJ, Yu SJ, Chang H, Rho WY, Jun BH. Recent Studies on Metal-Embedded Silica Nanoparticles for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:268. [PMID: 38334538 PMCID: PMC10856399 DOI: 10.3390/nano14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, silica nanoparticles (NPs) have attracted considerable attention as biocompatible and stable templates for embedding noble metals. Noble-metal-embedded silica NPs utilize the exceptional optical properties of novel metals while overcoming the limitations of individual novel metal NPs. In addition, the structure of metal-embedded silica NPs decorated with small metal NPs around the silica core results in strong signal enhancement in localized surface plasmon resonance and surface-enhanced Raman scattering. This review summarizes recent studies on metal-embedded silica NPs, focusing on their unique designs and applications. The characteristics of the metal-embedded silica NPs depend on the type and structure of the embedded metals. Based on this progress, metal-embedded silica NPs are currently utilized in various spectroscopic applications, serving as nanozymes, detection and imaging probes, drug carriers, photothermal inducers, and bioactivation molecule screening identifiers. Owing to their versatile roles, metal-embedded silica NPs are expected to be applied in various fields, such as biology and medicine, in the future.
Collapse
Affiliation(s)
- Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Mi Suk Noh
- Bio & Medical Research Center, Bio Business Division, Korea Testing Certification, Gunpo 15809, Gyeonggi-do, Republic of Korea;
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Jayoung Namgung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Min-Sup Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Cho-Hee Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Seung-Ju Yu
- Graduate School of Integrated Energy-AI, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Won Yeop Rho
- Graduate School of Integrated Energy-AI, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| |
Collapse
|
11
|
Zhang P, Liu B, Mu X, Xu J, Du B, Wang J, Liu Z, Tong Z. Performance of Classification Models of Toxins Based on Raman Spectroscopy Using Machine Learning Algorithms. Molecules 2023; 29:197. [PMID: 38202780 PMCID: PMC10780255 DOI: 10.3390/molecules29010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Rapid and accurate detection of protein toxins is crucial for public health. The Raman spectra of several protein toxins, such as abrin, ricin, staphylococcal enterotoxin B (SEB), and bungarotoxin (BGT), have been studied. Multivariate scattering correction (MSC), Savitzky-Golay smoothing (SG), and wavelet transform methods (WT) were applied to preprocess Raman spectra. A principal component analysis (PCA) was used to extract spectral features, and the PCA score plots clustered four toxins with two other proteins. The k-means clustering results show that the spectra processed with MSC and MSC-SG methods have the best classification performance. Then, the two data types were classified using partial least squares discriminant analysis (PLS-DA) with an accuracy of 100%. The prediction results of the PCA and PLS-DA and the partial least squares regression model (PLSR) perform well for the fingerprint region spectra. The PLSR model demonstrates excellent classification and regression ability (accuracy = 100%, Rcv = 0.776). Four toxins were correctly classified with interference from two proteins. Classification models based on spectral feature extraction were established. This strategy shows excellent potential in toxin detection and public health protection. These models provide alternative paths for the development of rapid detection devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (P.Z.); (B.L.); (X.M.); (J.X.); (B.D.); (J.W.); (Z.L.)
| |
Collapse
|
12
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
13
|
Zhao Y, Sang J, Fu Y, Guo J, Guo J. Magnetic nanoprobe-enabled lateral flow assays: recent advances. Analyst 2023. [PMID: 37365935 DOI: 10.1039/d3an00044c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In recent years, magnetic nanoparticle sensor technologies have attracted considerable interest in the point-of-care-testing (POCT) field, especially in lateral flow immunoassays (LFIAs). Although the visual signal of magnetic nanoparticles is reduced during an inspection, it can be compensated for by magnetic induction, and detection results can be quantified by magnetic sensors. Sensors that use magnetic nanoparticles (MNPs) as markers can overcome the high background noise of complex samples. In this study, MNP signal detection strategies are described from the perspectives of magnetoresistance, magnetic flux, frequency mixing technology, and magnetic permeability, and the principles and development of each technology are introduced in detail. Typical applications of magnetic nanoparticle sensor technologies are introduced. By describing the advantages and limitations of different sensing strategies, we highlight the development and improvement directions of different sensing strategies. In general, the future development of magnetic nanoparticle sensor technologies will be toward intelligent, convenient, and mobile high-performance detection equipment.
Collapse
Affiliation(s)
- Ying Zhao
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jingwei Sang
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yusheng Fu
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
14
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
15
|
Nan X, Yang L, Cui Y. Lateral Flow Immunoassay for Proteins. Clin Chim Acta 2023; 544:117337. [PMID: 37044163 DOI: 10.1016/j.cca.2023.117337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Protein biomarkers are useful for disease diagnosis. Identification thereof using in vitro diagnostics such as lateral flow immunoassays (LFIAs) has attracted considerable attention due to their low cost and ease of use especially in the point of care setting. Current challenges, however, do remain with respect to material selection for each component in the device and the synergistic integration of these components to display detectable signals. This review explores the principle of LFIA for protein biomarkers, device components including biomaterials and labeling methods. Medical applications and commercial status are examined as well. This review highlights critical methodologies in the development of new LFIAs and their role in advancing healthcare worldwide.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
16
|
Pohanka M. Immunosensors for Assay of Toxic Biological Warfare Agents. BIOSENSORS 2023; 13:402. [PMID: 36979614 PMCID: PMC10046508 DOI: 10.3390/bios13030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
An immunosensor for the assay of toxic biological warfare agents is a biosensor suitable for detecting hazardous substances such as aflatoxin, botulinum toxin, ricin, Shiga toxin, and others. The application of immunosensors is used in outdoor assays, point-of-care tests, as a spare method for more expensive devices, and even in the laboratory as a standard analytical method. Some immunosensors, such as automated flow-through analyzers or lateral flow tests, have been successfully commercialized as tools for toxins assay, but the research is ongoing. New devices are being developed, and the use of advanced materials and assay techniques make immunosensors highly competitive analytical devices in the field of toxic biological warfare agents assay. This review summarizes facts about current applications and new trends of immunosensors regarding recent papers in this area.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
17
|
Pei F, Feng S, Hu W, Liu B, Mu X, Hao Q, Cao Y, Lei W, Tong Z. Sandwich mode lateral flow assay for point-of-care detecting SARS-CoV-2. Talanta 2023; 253. [PMCID: PMC9612878 DOI: 10.1016/j.talanta.2022.124051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The global corona virus disease 2019 (COVID-19) has been announced a pandemic outbreak, and has threatened human life and health seriously. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as its causative pathogen, is widely detected in the screening of COVID-19 patients, infected people and contaminated substances. Lateral flow assay (LFA) is a popular point-of-care detection method, possesses advantages of quick response, simple operation mode, portable device, and low cost. Based on the above advantages, LFA has been widely developed for detecting SARS-CoV-2. In this review, we summarized the articles about the sandwich mode LFA detecting SARS-CoV-2, classified according to the target detection objects indicating genes, nucleocapsid protein, spike protein, and specific antibodies of SARS-CoV-2. In each part, LFA is further classified and summarized according to different signal detection types. Additionally, the properties of the targets were introduced to clarify their detection significance. The review is expected to provide a helpful guide for LFA sensitization and marker selection of SARS-CoV-2.
Collapse
Affiliation(s)
- Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shasha Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China,Corresponding author
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China,Corresponding author
| |
Collapse
|
18
|
Hong D, Jo EJ, Jung C, Kim MG. Absorption-Modulated SiO 2@Au Core-Satellite Nanoparticles for Highly Sensitive Detection of SARS-CoV-2 Nucleocapsid Protein in Lateral Flow Immunosensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45189-45200. [PMID: 36191048 PMCID: PMC9578370 DOI: 10.1021/acsami.2c13303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The worldwide spread of coronavirus disease 2019 (COVID-19) highlights the need for rapid, simple, and accurate tests to detect various variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antigen test, based on the lateral flow immunoassay (LFI), is a suitable "first line of defense" test that enables early identification and timely isolation of patients to minimize viral transmission among communities. However, it is generally less accurate than nucleic acid testing, and its sensitivity needs improvement. Here, a novel rapid detection method is designed to sensitively detect SARS-CoV-2 using isolated gold nanoparticle (AuNP)-assembled SiO2 core-satellite nanoparticles (SiO2@Au CSNPs). Well-grown AuNP satellites in the synthesis of SiO2@Au CSNPs significantly enhanced their light absorption, increased the detection sensitivity, and lowered the detection limit by 2 orders of magnitude relative to conventional gold colloids. The proposed system enabled highly sensitive detection of the SARS-CoV-2 nucleocapsid protein with a detection limit of 0.24 pg mL-1 within 20 min. This is the first study to develop a highly sensitive antigen test using the absorption-modulated SiO2@Au CSNPs. Our findings demonstrate the capacity of this platform to serve as an effective sensing strategy for managing pandemic conditions and preventing the spread of viral infections.
Collapse
Affiliation(s)
| | | | - Chaewon Jung
- Department of Chemistry, School of
Physics and Chemistry, Gwangju Institute
of Science & Technology (GIST), 123 Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of
Physics and Chemistry, Gwangju Institute
of Science & Technology (GIST), 123 Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| |
Collapse
|