1
|
Omidian H, Cubeddu LX, Wilson RL. Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications. Molecules 2025; 30:1572. [PMID: 40286158 PMCID: PMC11990896 DOI: 10.3390/molecules30071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Peptide-functionalized nanomedicine has emerged as a transformative approach in precision therapeutics and diagnostics, leveraging the specificity of peptides to enhance the performance of nanocarriers, including gold nanoparticles, polymeric nanoparticles, liposomes, mesoporous silica nanoparticles, and quantum dots. These systems enable targeted drug delivery, molecular imaging, biosensing, and regenerative medicine, offering unparalleled advantages in bioavailability, cellular uptake, and therapeutic selectivity. This review provides a comprehensive analysis of peptide-functionalization strategies, nanocarrier design, and their applications across oncology, neurodegenerative disorders, inflammatory diseases, infectious diseases, and tissue engineering. We further discuss the critical role of physicochemical characterization, in vitro and in vivo validation, and regulatory considerations in translating these technologies into clinical practice. Despite the rapid progress in peptide-functionalized platforms, challenges related to stability, immune response, off-target effects, and large-scale reproducibility remain key obstacles to their widespread adoption. Addressing these through advanced peptide engineering, optimized synthesis methodologies, and regulatory harmonization will be essential for their clinical integration. By bridging fundamental research with translational advancements, this review provides an interdisciplinary roadmap for the next generation of peptide-functionalized nanomedicines poised to revolutionize targeted therapy and diagnostics.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Luigi X. Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
2
|
Ramírez MDLA, Bou-Gharios J, Freis B, Draussin J, Cheignon C, Charbonnière LJ, Laurent S, Gevart T, Gasser A, Jung S, Rossetti F, Tillement O, Noel G, Pivot X, Detappe A, Bégin-Colin S, Harlepp S. Spacer engineering in nanoparticle-peptide conjugates boosts targeting specificity for tumor-associated antigens. NANOSCALE 2025; 17:5021-5032. [PMID: 39903198 DOI: 10.1039/d4nr02931c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Developing and synthesizing nano-objects capable of enabling early targeted diagnosis and ensuring effective tumor treatment represents a significant challenge in the theranostic field. Among various nanoparticles (NPs), iron oxide nanoparticles (IONPs) have made significant contributions to advancing this field. However, a key challenge lies in achieving selective recognition of specific cell types. In oncology, the primary goal is to develop innovative strategies to enhance NP uptake by tumors, primarily through active targeting. This involves adding targeting ligands (TL) to the NP surface to facilitate tumor accumulation and increase retention within the tumor microenvironment. Despite biofunctionalization strategies, overall tumor uptake remains modest at only 5-7% of the injected dose per gram. In this work, we demonstrate the effect of spacing between the NPs and the TL to improve their availability and thus the tumor uptake of the complex. This proof-of-concept study targets the epidermal growth factor receptor (EGFR) using a peptide as a targeting ligand. Specifically, we characterized the PEG-peptide coupled to dendronized IONPs, including the density of grafted TL. These nano-objects underwent in vitro evaluation to assess their ability to specifically target and be internalized by tumor cells. Therapeutically, compared to non-functionalized NPs, the presence of the TL with a PEG linker enhanced targeting efficacy and increased internalization, leading to improved photothermal efficacy.
Collapse
Affiliation(s)
- María de Los Angeles Ramírez
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, University of Strasbourg, 67000 Strasbourg, France
| | - Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Julien Draussin
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, Strasbourg, Cedex 2 67087, France
| | - Loic J Charbonnière
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, Strasbourg, Cedex 2 67087, France
| | - Sophie Laurent
- Service de Chimie Générale, Organique et Biomédicale, Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Thomas Gevart
- Service de Chimie Générale, Organique et Biomédicale, Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Adeline Gasser
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Sebastian Jung
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Fabien Rossetti
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
| | - Georges Noel
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, University of Strasbourg, 67000 Strasbourg, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Sylvie Bégin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504, 67087 Strasbourg, Cedex 2, France.
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, 67000 Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| |
Collapse
|
3
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
4
|
Santerre JP, Yang Y, Du Z, Wang W, Zhang X. Biomaterials' enhancement of immunotherapy for breast cancer by targeting functional cells in the tumor micro-environment. Front Immunol 2024; 15:1492323. [PMID: 39600709 PMCID: PMC11588700 DOI: 10.3389/fimmu.2024.1492323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Immunotherapy for breast cancer is now being considered clinically, and more recently, the number of investigations aimed specifically at nano-biomaterials-assisted immunotherapy for breast cancer treatment is growing. Alterations of the breast cancer micro-environment can play a critical role in anti-tumor immunity and cancer development, progression and metastasis. The improvement and rearrangement of tumor micro-environment (TME) may enhance the permeability of anti-tumor drugs. Therefore, targeting the TME is also an ideal and promising option during the selection of effective nano-biomaterial-based immuno-therapeutic strategies excepted for targeting intrinsic resistant mechanisms of the breast tumor. Although nano-biomaterials designed to specifically release loaded anti-tumor drugs in response to tumor hypoxia and low pH conditions have shown promises and the diversity of the TME components also supports a broad targeting potential for anti-tumor drug designs, yet the applications of nano-biomaterials for targeting immunosuppressive cells/immune cells in the TME for improving the breast cancer treating outcomes, have scarcely been addressed in a scientific review. This review provides a thorough discussion for the application of the different forms of nano-biomaterials, as carrier vehicles for breast cancer immunotherapy, targeting specific types of immune cells in the breast tumor microenvironment. In parallel, the paper provides a critical analysis of current advances/challenges with leading nano-biomaterial-mediated breast cancer immunotherapeutic strategies. The current review is timely and important to the cancer research field and will provide a critical tool for nano-biomaterial design and research groups pushing the clinical translation of new nano-biomaterial-based immuno-strategies targeting breast cancer TME, to further open new avenues for the understanding, prevention, diagnosis and treatment of breast cancer, as well as other cancer types.
Collapse
Affiliation(s)
- J. Paul Santerre
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yangyang Yang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Ziwei Du
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenshuang Wang
- Department of Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqing Zhang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
5
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
6
|
Song H, Zhao Z, Ma L, Zhao W, Hu Y, Song Y. Novel exosomal circEGFR facilitates triple negative breast cancer autophagy via promoting TFEB nuclear trafficking and modulating miR-224-5p/ATG13/ULK1 feedback loop. Oncogene 2024; 43:821-836. [PMID: 38280941 PMCID: PMC10920198 DOI: 10.1038/s41388-024-02950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Triple-negative breast cancer (TNBC) cells are in a more hypoxic and starved state than non-TNBC cells, which makes TNBC cells always maintain high autophagy levels. Emerging evidence has demonstrated that circular RNAs (circRNAs) are involved in the progress of tumorigenesis. However, the regulation and functions of autophagy-induced circRNAs in TNBC remain unclear. In our study, autophagy-responsive circRNA candidates in TNBC cells under amino acid starved were identified by RNA sequencing. The results showed that circEGFR expression was significantly upregulated in autophagic cells. Knockdown of circEGFR inhibited autophagy in TNBC cells, and circEGFR derived from exosomes induced autophagy in recipient cells in the tumor microenvironment. In vitro and in vivo functional assays identified circEGFR as an oncogenic circRNA in TNBC. Clinically, circEGFR was significantly upregulated in TNBC and was positively associated with lymph node metastasis. CircEGFR in plasma-derived exosomes was upregulated in breast cancer patients compared with healthy people. Mechanistically, circEGFR facilitated the translocation of Annexin A2 (ANXA2) toward the plasma membrane in TNBC cells, which led to the release of Transcription Factor EB (a transcription factor of autophagy-related proteins, TFEB) from ANXA2-TFEB complex, causing nuclear translocation of TFEB, thereby promoting autophagy in TNBC cells. Meanwhile, circEGFR acted as ceRNA by directly binding to miR-224-5p and inhibited the expression of miR-224-5p, which weakened the suppressive role of miR-224-5p/ATG13/ULK1 axis on autophagy. Overall, our study demonstrates the key role of circEGFR in autophagy, malignant progression, and metastasis of TNBC. These indicate circEGFR is a potential diagnosis biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Huachen Song
- Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weihong Zhao
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yi Hu
- Senior Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Zhang S, Chen M, Geng Z, Liu T, Li S, Yu Q, Cao L, Liu D. Potential Application of Self-Assembled Peptides and Proteins in Breast Cancer and Cervical Cancer. Int J Mol Sci 2023; 24:17056. [PMID: 38069380 PMCID: PMC10706889 DOI: 10.3390/ijms242317056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Ongoing research is gradually broadening the idea of cancer treatment, with attention being focused on nanoparticles to improve the stability, therapeutic efficacy, targeting, and other important metrics of conventional drugs and traditional drug delivery methods. Studies have demonstrated that drug delivery carriers based on biomaterials (e.g., protein nanoparticles and lipids) and inorganic materials (e.g., metal nanoparticles) have potential anticancer effects. Among these carriers, self-assembled proteins and peptides, which are highly biocompatible and easy to standardize and produce, are strong candidates for the preparation of anticancer drugs. Breast cancer (BC) and cervical cancer (CC) are two of the most common and deadly cancers in women. These cancers not only threaten lives globally but also put a heavy burden on the healthcare system. Despite advances in medical care, the incidence of these two cancers, particularly CC, which is almost entirely preventable, continues to rise, and the mortality rate remains steady. Therefore, there is still a need for in-depth research on these two cancers to develop more targeted, efficacious, and safe therapies. This paper reviews the types of self-assembling proteins and peptides (e.g., ferritin, albumin, and virus-like particles) and natural products (e.g., soy and paclitaxel) commonly used in the treatment of BC and CC and describes the types of drugs that can be delivered using self-assembling proteins and peptides as carriers (e.g., siRNAs, DNA, plasmids, and mRNAs). The mechanisms (including self-assembly) by which the natural products act on CC and BC are discussed. The mechanism of action of natural products on CC and BC and the mechanism of action of self-assembled proteins and peptides have many similarities (e.g., NF-KB and Wnt). Thus, natural products using self-assembled proteins and peptides as carriers show potential for the treatment of BC and CC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingling Cao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.Z.); (M.C.); (Z.G.); (T.L.); (S.L.); (Q.Y.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.Z.); (M.C.); (Z.G.); (T.L.); (S.L.); (Q.Y.)
| |
Collapse
|
8
|
Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol 2023; 14:1255820. [PMID: 37691919 PMCID: PMC10485606 DOI: 10.3389/fimmu.2023.1255820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to the lack of specific therapeutic targets, treatment options are limited, and the recurrence and metastasis rate is high, the overall survival of patients is poor. However, with the discovery of some new targets and the corresponding immune regulation after targeting these targets, TNBC has a new hope in treatment. The peptide has a simple structure, strong binding affinity, and high stability, and has great potential in targeted therapy and immune regulation against TNBC. This review will discuss how single peptides and peptide combinations target triple-negative breast cancer to exert immunomodulatory effects. Among them, single peptides target specific receptors on TNBC cells, act as decoys to target key ligands in the regulatory pathway, and target TME-related cells. The combinations of peptides work in the form of cancer vaccines, engineered exosomes, microRNAs and other immune-related molecular pathways, immune checkpoint inhibitors, chimeric antigen receptor T cells, and drug-peptide conjugates. This article is mainly dedicated to exploring new treatment methods for TNBC to improve the curative effect and prolong the survival time of patients.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|