1
|
Duan Z, Cai F, Chen Y, Chen T, Lu P. Advanced Applications of Porous Materials in Triboelectric Nanogenerator Self-Powered Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:3812. [PMID: 38931596 PMCID: PMC11207259 DOI: 10.3390/s24123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Porous materials possess advantages such as rich pore structures, a large surface area, low relative density, high specific strength, and good breathability. They have broad prospects in the development of a high-performance Triboelectric Nanogenerator (TENG) and self-powered sensing fields. This paper elaborates on the structural forms and construction methods of porous materials in existing TENG, including aerogels, foam sponges, electrospinning, 3D printing, and fabric structures. The research progress of porous materials in improving TENG performance is systematically summarized, with a focus on discussing design strategies of porous structures to enhance the TENG mechanical performance, frictional electrical performance, and environmental tolerance. The current applications of porous-material-based TENG in self-powered sensing such as pressure sensing, health monitoring, and human-machine interactions are introduced, and future development directions and challenges are discussed.
Collapse
Affiliation(s)
- Zhengyin Duan
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Feng Cai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Yuxin Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| | - Tianying Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.D.); (F.C.); (Y.C.)
| |
Collapse
|
2
|
Ma HZ, Zhao JN, Tang R, Shao Y, Ke K, Zhang K, Yin B, Yang MB. Polypyrrole@CNT@PU Conductive Sponge-Based Triboelectric Nanogenerators for Human Motion Monitoring and Self-Powered Ammonia Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54986-54995. [PMID: 37967332 DOI: 10.1021/acsami.3c14082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Elastic sponges are ideal materials for triboelectric nanogenerators (TENGs) to harvest irregular and random mechanical energy from the environment. However, the conductive design of the elastic materials in TENGs often limits its applications. In this work, we have demonstrated that an elastic conductive sponge can be used as the triboelectric layer and electrode for TENGs. Such an elastic conductive sponge is prepared by a simple way of adsorbing multiwalled carbon nanotubes and monomers of pyrrole to grow conductive polypyrroles on the surface of an elastic polyurethane (PU) sponge. Due to the porous structure of the PU sponge and the conductive multiwalled carbon nanotubes (MWCNTs), PPy on the surface of PU could provide a large contact area to improve the output performance of TENGs, and the conductive sponge-based TENG could generate an output of open-circuit voltage of 110 V or a short-circuit current of 12 μA, respectively. The good flexibility of the conductive PU sponge makes the TENG harvest the kinetic energy of disordered motion with different amplitudes, allowing for human motion monitoring. Furthermore, the porous structure of PU and the synergistic effects of PPy and MWCNTs enable the conductive sponge to sense NH3 as a self-powered NH3 sensor. This work offers a simple way to construct a flexible TENG system for random mechanical energy harvesting, human motion monitoring, and self-powered NH3 sensing.
Collapse
Affiliation(s)
- Hong-Zhi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jiang-Nan Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
3
|
Nan Y, Wang X, Zhou H, Sun Y, Yu T, Yang L, Huang Y. Highly porous and rough polydimethylsiloxane film-based triboelectric nanogenerators and its application for electrochemical cathodic protection. iScience 2023; 26:108261. [PMID: 38026149 PMCID: PMC10660087 DOI: 10.1016/j.isci.2023.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The development and utilization of triboelectric nanogenerator (TENG) are very important for realizing energy cleaning in electrochemical processes. However, limited electrical output performance plays a major stumbling block to this process. Herein, a porous and high-roughness PDMS (PR/PDMS) negative friction layer was obtained by doping PDMS with powdered chitosan and casting using a sacrificial anodic alumina template. A TENG was fabricated by the PR/PDMS with Al film (PR-TENG). The PR-TENG exhibited much better performance than the pure PDMS-based TENG, which was attributed to the porous properties of the PR/PDMS. Under the driving of external mechanical force at 5 Hz, the PR-TENG showed a maximum output open-circuit voltage (Voc) and short-circuit current density (Jsc) of 77.1 V and 33.9 mA/m2, respectively. To prove the concept, the electrochemical cathodic protection system with PR-TENG was constructed. Ultimately, the application prospects of the PR-TENG as a clean energy source for electrochemical processes were explored and evaluated.
Collapse
Affiliation(s)
- Youbo Nan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiutong Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hui Zhou
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yanan Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Teng Yu
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lihui Yang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yanliang Huang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Mi Y, Zhao Z, Wu H, Lu Y, Wang N. Porous Polymer Materials in Triboelectric Nanogenerators: A Review. Polymers (Basel) 2023; 15:4383. [PMID: 38006107 PMCID: PMC10675394 DOI: 10.3390/polym15224383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Since the invention of the triboelectric nanogenerator (TENG), porous polymer materials (PPMs), with different geometries and topologies, have been utilized to enhance the output performance and expand the functionality of TENGs. In this review, the basic characteristics and preparation methods of various PPMs are introduced, along with their applications in TENGs on the basis of their roles as electrodes, triboelectric surfaces, and structural materials. According to the pore size and dimensionality, various types of TENGs that are built with hydrogels, aerogels, foams, and fibrous media are classified and their advantages and disadvantages are analyzed. To deepen the understanding of the future development trend, their intelligent and multifunctional applications in human-machine interfaces, smart wearable devices, and self-powering sensors are introduced. Finally, the future directions and challenges of PPMs in TENGs are explored to provide possible guidance on PPMs in various TENG-based intelligent devices and systems.
Collapse
Affiliation(s)
- Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Han Wu
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| |
Collapse
|
5
|
Yan J, Tang Z, Mei N, Zhang D, Zhong Y, Sheng Y. Triboelectric Nanogenerators for Efficient Low-Frequency Ocean Wave Energy Harvesting with Swinging Boat Configuration. MICROMACHINES 2023; 14:748. [PMID: 37420981 DOI: 10.3390/mi14040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 07/09/2023]
Abstract
To reach ocean resources, sea activities and marine equipment variety are increasing, requiring offshore energy supply. Marine wave energy, the marine renewable energy with the most potential, offers massive energy storage and great energy density. This research proposes a swinging boat-type triboelectric nanogenerator concept for low-frequency wave energy collection. Triboelectric electronanogenerators with electrodes and a nylon roller make up the swinging boat-type triboelectric nanogenerator (ST-TENG). COMSOL electrostatic simulations and power generation concepts of independent layer and vertical contact separation modes of operation explain the device functionality. By rolling the drum at the bottom of the integrated boat-like device, it is possible to capture wave energy and convert it into electrical energy. Based on it, the ST load, TENG charging, and device stability are evaluated. According to the findings, the maximum instantaneous power of the TENG in the contact separation and independent layer modes reaches 246 W and 112.5 μW at matched loads of 40 MΩ and 200 MΩ, respectively. Additionally, the ST-TENG can retain the usual functioning of the electronic watch for 45 s while charging a 33 µF capacitor to 3 V in 320 s. Long-term low-frequency wave energy collection is possible with the device. The ST-TENG develops novel methods for large-scale blue energy collection and maritime equipment power.
Collapse
Affiliation(s)
- Jin Yan
- Ship and Maritime College, Guangdong Ocean University, Zhanjiang 524088, China
- Mechanical Engineering College, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Zhi Tang
- Mechanical Engineering College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Naerduo Mei
- Ship and Maritime College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dapeng Zhang
- Ship and Maritime College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinghao Zhong
- Ship and Maritime College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuxuan Sheng
- Ship and Maritime College, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
6
|
Yang M, Tian X, Hua T. Transparent, Stretchable, and Adhesive Conductive Ionic Hydrogel-Based Self-Powered Sensors for Smart Elderly Care Systems. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11802-11811. [PMID: 36808938 DOI: 10.1021/acsami.2c22331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nowadays, with the intensification of the aging society, the demand for elderly care and medical services is increasing and the elderly care and health systems are facing serious challenges. Therefore, it is imperative to develop a smart elderly care system to achieve real-time interaction between the elderly, the community, and medical personnel and to improve the efficiency of caring for the elderly. Here, we prepared ionic hydrogels with stable properties of high mechanical strength, high electrical conductivity, and high transparency by the one-step immersion method and used them in self-powered sensors for smart elderly care systems. The complexation of Cu2+ ions with polyacrylamide (PAAm) endows ionic hydrogels with excellent mechanical properties and electrical conductivity. Meanwhile, potassium sodium tartrate prevents the generated complex ions from precipitating into precipitates, thus ensuring the transparency of the ionic conductive hydrogel. After optimization, the transparency, tensile strength, elongation at break, and conductivity of the ionic hydrogel reached 94.1% at 445 nm, 192 kPa, 1130%, and 6.25 S/m, respectively. By processing and coding the collected triboelectric signals, a self-powered human-machine interaction system attached to the finger of the elderly was developed. The elderly can complete the transmission of distress and basic needs by simply bending their fingers, greatly reducing the pressure of inadequate medical care in an aging society. This work demonstrates the value of self-powered sensors in the field of smart elderly care systems, showing a wide implication in human-computer interface.
Collapse
Affiliation(s)
- Mengyan Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Xiao Tian
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Tao Hua
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
7
|
Li Z, Hu K, Li Z, Li C, Deng Y. Polypyrrole-Stabilized Polypeptide for Eco-Friendly Supercapacitors. Int J Mol Sci 2023; 24:2497. [PMID: 36768819 PMCID: PMC9916972 DOI: 10.3390/ijms24032497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
As an energy storage technology, supercapacitors (SCs) have become an important part of many electronic systems because of their high-power density, long cycle life, and maintenance-free characteristics. However, the widespread development and use of electronics, including SCs, have led to the generation of a large amount of e-waste. In addition, achieving compatibility between stability and biodegradability has been a prominent challenge for implantable electronics. Therefore, environmentally friendly SCs based on polypyrrole (PPy)-stabilized polypeptide (FF) are demonstrated in this study. The fully degradable SC has a layer-by-layer structure, including polylactic acid/chitosan (PLA-C) support layers, current collectors (Mg), FF/PPy composite layers, and a polyvinyl alcohol/phosphate buffer solution (PVA/PBS) hydrogel. It has the advantages of being light, thin, flexible, and biocompatible. After 5000 cycles in air, the capacitance retention remains at up to 94.7%. The device could stably operate for 7 days in a liquid environment and completely degrade in vitro within 90 days without any adverse effect on the environment. This work has important implications for eco-friendly electronics and will have a significant impact on the implantable biomedical electronics.
Collapse
Affiliation(s)
- Zhe Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Kuan Hu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Cong Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yulin Deng
- School of Life, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Electrospun-nanofibrous Redox-active separator for enhancing the capacity of Lithium-ion batteries. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zhao Z, Xia K, Hou Y, Zhang Q, Ye Z, Lu J. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev 2021; 50:12702-12743. [PMID: 34643198 DOI: 10.1039/d1cs00800e] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid development of portable/wearable electronics proposes new demands for energy storage devices, which are flexibility, smart functions and long-time outdoor operation. Supercapacitors (SCs) show great potential in portable/wearable applications, and the recently developed flexible, smart and self-sustainable supercapacitors greatly meet the above demands. In these supercapacitors, conductive polymers (CPs) are widely applied due to their high flexibility, conductivity, pseudo-capacitance, smart characteristics and moderate preparation conditions. Herein, we'd like to introduce the CP-based flexible, smart and self-sustainable supercapacitors for portable/wearable electronics. This review first summarizes the flexible SCs based on CPs and their composites with carbon materials and metal compounds. The smart supercapacitors, i.e., electrochromic, electrochemical actuated, stretchable, self-healing and stimuli-sensitive ones, are then presented. The self-sustainable SCs which integrate SC units with energy-harvesting units in one compact configuration are also introduced. The last section highlights some current challenges and future perspectives of this thriving field.
Collapse
Affiliation(s)
- Zhenyun Zhao
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Kequan Xia
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. .,Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. .,Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| |
Collapse
|
10
|
Zhang W, You L, Meng X, Wang B, Lin D. Recent Advances on Conducting Polymers Based Nanogenerators for Energy Harvesting. MICROMACHINES 2021; 12:1308. [PMID: 34832720 PMCID: PMC8623428 DOI: 10.3390/mi12111308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
With the rapid growth of numerous portable electronics, it is critical to develop high-performance, lightweight, and environmentally sustainable energy generation and power supply systems. The flexible nanogenerators, including piezoelectric nanogenerators (PENG) and triboelectric nanogenerators (TENG), are currently viable candidates for combination with personal devices and wireless sensors to achieve sustained energy for long-term working circumstances due to their great mechanical qualities, superior environmental adaptability, and outstanding energy-harvesting performance. Conductive materials for electrode as the critical component in nanogenerators, have been intensively investigated to optimize their performance and avoid high-cost and time-consuming manufacture processing. Recently, because of their low cost, large-scale production, simple synthesis procedures, and controlled electrical conductivity, conducting polymers (CPs) have been utilized in a wide range of scientific domains. CPs have also become increasingly significant in nanogenerators. In this review, we summarize the recent advances on CP-based PENG and TENG for biomechanical energy harvesting. A thorough overview of recent advancements and development of CP-based nanogenerators with various configurations are presented and prospects of scientific and technological challenges from performance to potential applications are discussed.
Collapse
Affiliation(s)
- Weichi Zhang
- Mechanical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liwen You
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 201424, China;
| | - Xiao Meng
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (X.M.); (B.W.)
| | - Bozhi Wang
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (X.M.); (B.W.)
| | - Dabin Lin
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (X.M.); (B.W.)
| |
Collapse
|
11
|
Promoting electrocatalytic carbon monoxide reduction to ethylene on copper-polypyrrole interface. J Colloid Interface Sci 2021; 600:847-853. [PMID: 34051469 DOI: 10.1016/j.jcis.2021.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
The renewable energy-powered electroreduction of carbon dioxide or monoxide (CO) has been emerging as an attractive means to decarbonize the emission-intensive chemical manufacturing, which heavily relies on fossil fuels nowadays. One potential approach to promote the activity of electrocatalysts is to construct hybrid interface that can increase the stability of intermediates on electrode surfaces. Herein we developed a copper nanoparticle/polypyrrole (Cu-Ppy) nanowire composite as an efficient electrocatalyst for electrochemical CO reduction reaction. Compared to pure Cu nanoparticles, the Cu-Ppy composite exhibited a dramatically enhanced Faradaic efficiency of converting CO to ethylene (C2H4) from 34% to 69% at -0.78 V vs. reversible hydrogen electrode (RHE) in KOH electrolyte, and an excellent C2H4 partial current density of 276 mA·cm-2 at -1.18 V vs. RHE. Density functional theory calculations showed that the Cu-Ppy composite could bind CO more strongly as compared to pure Cu. As the Ppy coating allowed to stabilize OCCO*, a key intermediate in the C2H4 formation, both the activity and selectivity of Cu-Ppy for CO-to-C2H4 were increased. Our work suggests that constructing rationally designed hybrid interface can tune the local environment of catalyst surface toward enhanced activity and product selectivity.
Collapse
|
12
|
Xiong W, Hu K, Li Z, Jiang Y, Li Z, Li Z, Wang X. A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. NANO ENERGY 2019; 66:104149. [DOI: 10.1016/j.nanoen.2019.104149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
13
|
Li P, Zhang Y, Zheng Z. Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902987. [PMID: 31304644 DOI: 10.1002/adma.201902987] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/26/2019] [Indexed: 05/21/2023]
Abstract
The rapid development of flexible and wearable electronics favors low-cost, solution-processing, and high-throughput techniques for fabricating metal contacts, interconnects, and electrodes on flexible substrates of different natures. Conventional top-down printing strategies with metal-nanoparticle-formulated inks based on the thermal sintering mechanism often suffer from overheating, rough film surface, low adhesion, and poor metal quality, which are not desirable for most flexible electronic applications. In recent years, a bottom-up strategy termed as polymer-assisted metal deposition (PAMD) shows great promise in addressing the abovementioned challenges. Here, a detailed review of the development of PAMD in the past decade is provided, covering the fundamental chemical mechanism, the preparation of various soft and conductive metallic materials, the compatibility to different printing technologies, and the applications for a wide variety of flexible and wearable electronic devices. Finally, the attributes of PAMD in comparison with conventional nanoparticle strategies are summarized and future technological and application potentials are elaborated.
Collapse
Affiliation(s)
- Peng Li
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, S. A. R., China
| | - Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, S. A. R., China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, S. A. R., China
| |
Collapse
|