1
|
Brucks MD, Arslanova A, Byrne NF, Hui J, Kurtz HE, Hersam MC, Richards JJ. Anisotropic Electrical Transport in Mechanically Responsive Silver-Coated Microparticle-Gel Composites for Flowable Semiconducting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415066. [PMID: 39924797 PMCID: PMC11923527 DOI: 10.1002/adma.202415066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Soft materials with reversible electrical and mechanical properties are critical for the development of advanced bioelectronics that can distinguish between different rates of applied strain and eliminate performance degradation over many cycles. However, the current paradigm in mechano-electronic devices involves measuring changes in electrical current based on the accumulation of strain within a conductive material that alters the geometry through which electrons flow. Attempts have been made to incorporate soft materials like liquid metals and concentrated solutions of conjugated polymers and salts to overcome materials degradation but are limited in their ability to detect changes in the rate of the applied strain. Herein, the anisotropic electrical performance of a soft semiconducting composite prepared with silver-coated microspheres dispersed within a swollen copolymer gel is demonstrated. This composite exhibits an electrical response proportional to the magnitude of the applied shear force to enable a rate-of-strain dependent conductivity. Furthermore, a 100-fold increase in the conductivity of the composite is observed when the electric field is oriented parallel to the flow direction. This improvement in the electrical response can be attributed to the enhanced alignment of microspheres in viscoelastic media and can be leveraged in the development of mechanically responsive electronic devices.
Collapse
Affiliation(s)
- Matthew D Brucks
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Alina Arslanova
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Nicholas F Byrne
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Janan Hui
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Heather E Kurtz
- Department of Materials Science & Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Jeffrey J Richards
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Wang E, Huang W, Miao Y, Jia L, Liang Y, Wang S, Zhang W, Zou LH, Zhong Y, Huang J. Conductive and superhydrophobic lignin/carbon nanotube coating with nest-like structure for deicing, oil absorption and wearable piezoresistive sensor. Int J Biol Macromol 2024; 278:134886. [PMID: 39168195 DOI: 10.1016/j.ijbiomac.2024.134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The development of multifunctional coatings is a trend. Here, a conductive and superhydrophobic coating with nest-like structure was prepared on the wood or polyurethane (PU) sponge by spraying or soaking methods. The coating contains lignin and carboxylated multi-wall carbon nanotubes (MWCNT) as the main materials, both methyl trimethoxysilane (MTMS) and polydimethylsiloxane (PDMS) as the modifiers. And benefiting from the protective effect of the nest-like structure, the coating exhibits excellent abrasion resistance (withstanding 43 abrasion cycles), stability, and UV resistance (little change in water contact angle after 240 h of ultraviolet (UV) irradiation) by optimizing the proportions. Additionally, the coating provides eminent deicing (complete removal after 142.7 s) and self-cleaning on the wood, as well as the superior sensing performance and oil absorption (15.0-49.6 g/g for various oils) on the PU sponge. When assembled into compressible piezoresistive sensor, it could clearly sense the signals of rapid, short, circulation, different speed and deformation, possessing a prosperous wearable device prospect. It is envisaged that the coating supplies a new platform for superhydrophobicity, wearable electronics and oil absorption.
Collapse
Affiliation(s)
- Enfu Wang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
| | - Wentao Huang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Miao
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
| | - Lijian Jia
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
| | - Yipeng Liang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
| | - Siqun Wang
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA
| | - Wenbiao Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
| | - Long-Hai Zou
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong Zhong
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jingda Huang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Dai Z, Lei M, Ding S, Zhou Q, Ji B, Wang M, Zhou B. Durable superhydrophobic surface in wearable sensors: From nature to application. EXPLORATION (BEIJING, CHINA) 2024; 4:20230046. [PMID: 38855620 PMCID: PMC11022629 DOI: 10.1002/exp.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 06/11/2024]
Abstract
The current generation of wearable sensors often experiences signal interference and external corrosion, leading to device degradation and failure. To address these challenges, the biomimetic superhydrophobic approach has been developed, which offers self-cleaning, low adhesion, corrosion resistance, anti-interference, and other properties. Such surfaces possess hierarchical nanostructures and low surface energy, resulting in a smaller contact area with the skin or external environment. Liquid droplets can even become suspended outside the flexible electronics, reducing the risk of pollution and signal interference, which contributes to the long-term stability of the device in complex environments. Additionally, the coupling of superhydrophobic surfaces and flexible electronics can potentially enhance the device performance due to their large specific surface area and low surface energy. However, the fragility of layered textures in various scenarios and the lack of standardized evaluation and testing methods limit the industrial production of superhydrophobic wearable sensors. This review provides an overview of recent research on superhydrophobic flexible wearable sensors, including the fabrication methodology, evaluation, and specific application targets. The processing, performance, and characteristics of superhydrophobic surfaces are discussed, as well as the working mechanisms and potential challenges of superhydrophobic flexible electronics. Moreover, evaluation strategies for application-oriented superhydrophobic surfaces are presented.
Collapse
Affiliation(s)
- Ziyi Dai
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
- State Key Laboratory of Crystal MaterialsInstitute of Novel SemiconductorsSchool of MicroelectronicsShandong UniversityJinanChina
| | - Ming Lei
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Sen Ding
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Qian Zhou
- School of Physics and ElectronicsCentral South UniversityChangshaChina
| | - Bing Ji
- School of Physics and ElectronicsHunan Normal UniversityChangshaChina
| | - Mingrui Wang
- Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| |
Collapse
|
4
|
Wang JX, Qian J, Li JX, Wang X, Lei C, Li S, Li J, Zhong M, Mao Y. Enhanced interfacial boiling of impacting droplets upon vibratory surfaces. J Colloid Interface Sci 2024; 658:748-757. [PMID: 38142625 DOI: 10.1016/j.jcis.2023.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
HYPOTHESIS Despite the flourishing studies of droplet interfacial boiling, the boiling upon vibratory surfaces, which may cause vigorous liquid-vapor-solid interactions, has rarely been investigated. Enhanced boiling normally can be gained from rapid removal of vapor and disturbance of liquid-vapor interface. We hypothesize that the vibratory surfaces enhance both effects with new intriguing phenomena and thus, attain an enhanced boiling heat transfer. EXPERIMENTS We experimentally investigated the impacting fluid dynamics and coupled heat transfer patterns of multiple droplets and a single droplet impinging on still and vibratory surfaces of various materials and different wettability. FINDINGS The boiling under vibratory surfaces with increased vibration velocity amplitude and enhanced wettability can be enhanced by 80% in heat transfer coefficient and Nusselt number, which is attributed to several reasons: shortened bubble lifespan, thinner and smaller bubbles, and enhanced disturbances in liquid-vapor interfaces. The vibration also delays the Leidenfrost point when the droplet impacts a descending surface, which shows that the droplet impact moment (vibration phase angle) is particularly crucial. The descending surface releases the generated vapor actively and facilitates liquid-solid contact, thereby delaying the Leidenfrost. From fundamentals to application, this article strengthens our understanding of vibrated interfacial boiling in scenarios closer to multiple natural processes and practical industries.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China; Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Hebei 054000, PR China; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China; Taizhou Wavexploration Energy Ltd., Taizhou, 225513, PR China
| | - Jian Qian
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jia-Xin Li
- China Academy of Launch Vehicle Technology, Beijing 100076, PR China
| | - Xiong Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, PR China
| | - Chaojie Lei
- Beijing Sino-Spark Technology Co., Ltd., Beijing 100191, PR China
| | - Shengquan Li
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Mingliang Zhong
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, PR China.
| | - Yufeng Mao
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China; Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, PR China.
| |
Collapse
|
5
|
Wang M, Hou L, Xiao Y, Liu R, Han L, Nikolai M, Zhang S, Cheng C, Hu K. Highly Sensitive Flexible Sensors for Human Activity Monitoring and Personal Healthcare. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15911-15919. [PMID: 37906701 DOI: 10.1021/acs.langmuir.3c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Flexible sensors are capable of converting multiple human physiological signals into electrical signals for various applications in clinical diagnostics, athletics, and human-machine interaction. High-performance flexible strain sensors are particularly desirable for sensitive, reliable, and long-term monitoring, but current applications are still constrained due to high response threshold, low recoverability properties, and complex preparation methods. In this study, we present a stable and flexible strain sensor by a cost-effective self-assemble approach that demonstrates remarkable sensitivity (2169), ultrafast response and recovery time (112 ms), and wide dynamic response range (0-50%), as confirmed in human pulse and human-computer interaction. These excellent performances can be attributed to the design of a Polydimethylsiloxane (PDMS) substrate integrated with multiwalled carbon nanotubes (MWCNT) and graphene nanosheets (GNFs), which results in high electrical conductivity. The MWCNT serves as a bridge, connecting the GNFs to create an efficient conductive path even under a strain of 50%. We also demonstrate the strain sensor's capability in weak physiological signal pulse measurement and excellent resistance to mechanical fatigue. Moreover, the sensor shows diverse sensitivities in various tensile states with different signal patterns, making it highly suitable for full-range human monitoring and flexible wearable systems.
Collapse
Affiliation(s)
- Mengzhu Wang
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Lanlan Hou
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yingying Xiao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Lu Han
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Mukhurov Nikolai
- SSPA Optics, Optoelectronics and Laser Technology, National Academy of Sciences of Belarus, Minsk 220072, Republic of Belarus
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chuantong Cheng
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Double enzyme mimetic activities of multifunctional Ag nanoparticle-decorated Co3V2O8 hollow hexagonal prismatic pencils for application in colorimetric sensors and disinfection. NANO MATERIALS SCIENCE 2023. [DOI: 10.1016/j.nanoms.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
7
|
MXene-based flexible pressure sensor with piezoresistive properties significantly enhanced by atomic layer infiltration. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Wearable and stretchable conductive polymer composites for strain sensors: How to design a superior one? NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|